重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A transformer-based image detection method for grassland situation of alpine meadows

图像拼接 草原 计算机科学 人工智能 稳健性(进化) 环境科学 遥感 计算机视觉 生态学 地理 生物化学 生物 基因 化学
作者
Yuzhuo Zhang,Tianyi Wang,Yong You,Decheng Wang,Jinlong Gao,Tiangang Liang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:210: 107919-107919 被引量:7
标识
DOI:10.1016/j.compag.2023.107919
摘要

As a vital role in climate regulation, water conservation, and maintenance of ecological balance, the alpine meadow grassland is facing the threat of degradation. Detecting grassland topography, phytomass, and grassland damage are important for improving the alpine meadow situation. This study reports a Transformer-CNN method for detecting alpine meadows situations using UnmannedAerial Vehicle (UAV) - based RGB (Red, Green, and Blue) data. This method combines Oriented FAST and Rotated BRIEF (ORB) and brute force feature matching to complete image stitching and then uses the proposed model Am-mask to complete the image segmentation task. The result shows that ORB feature matching is more stable and fast than SIFT and SURF for alpine meadow image stitching. In addition, Transformer has great application potential in grassland image detection and introducing task prefix and sparse in pre-training enhances the model’s robustness. The AP value of the Am-mask model with Transformer was as high as 95.4%, about 10% higher than that of the original CNN models. In the experiment with unstitched images, the average precision of the eight trials was 95.16%, the average recall was 95.13%, and the average F1 value was 95.14%. For stitched images, the average precision, recall, and F1 value of the eight trials were 91.83%, 91.81%, and 91.82%, respectively. It was proved that the proposed method could save the inference cost of the model under the condition of ensuring the detection effect. This study may contribute to grassland environmental protection in alpine meadows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coffe逗发布了新的文献求助10
1秒前
1秒前
2秒前
ZzZz完成签到,获得积分10
2秒前
五里霜完成签到,获得积分10
2秒前
浮游应助说点啥采纳,获得10
2秒前
mange完成签到 ,获得积分10
3秒前
杨XL完成签到,获得积分10
3秒前
4秒前
4秒前
赘婿应助wwww采纳,获得10
4秒前
4秒前
io发布了新的文献求助200
5秒前
Hello应助irisjlj采纳,获得10
5秒前
风雨琳琅完成签到,获得积分10
5秒前
5秒前
xu给xu的求助进行了留言
6秒前
美好行天发布了新的文献求助10
6秒前
6秒前
6秒前
多大发布了新的文献求助10
6秒前
chivu1980发布了新的文献求助20
7秒前
9秒前
9秒前
果果发布了新的文献求助10
10秒前
zy发布了新的文献求助10
10秒前
11秒前
12秒前
搜集达人应助lbx619采纳,获得10
12秒前
12秒前
小潘完成签到,获得积分10
13秒前
美好行天完成签到,获得积分10
13秒前
热心梦山完成签到,获得积分10
13秒前
13秒前
陈进完成签到,获得积分10
13秒前
narthon发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
Prandtl完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516