A transformer-based image detection method for grassland situation of alpine meadows

图像拼接 草原 计算机科学 人工智能 稳健性(进化) 环境科学 遥感 计算机视觉 生态学 地理 生物化学 生物 基因 化学
作者
Yuzhuo Zhang,Tianyi Wang,Yong You,Decheng Wang,Jinlong Gao,Tiangang Liang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:210: 107919-107919 被引量:2
标识
DOI:10.1016/j.compag.2023.107919
摘要

As a vital role in climate regulation, water conservation, and maintenance of ecological balance, the alpine meadow grassland is facing the threat of degradation. Detecting grassland topography, phytomass, and grassland damage are important for improving the alpine meadow situation. This study reports a Transformer-CNN method for detecting alpine meadows situations using UnmannedAerial Vehicle (UAV) - based RGB (Red, Green, and Blue) data. This method combines Oriented FAST and Rotated BRIEF (ORB) and brute force feature matching to complete image stitching and then uses the proposed model Am-mask to complete the image segmentation task. The result shows that ORB feature matching is more stable and fast than SIFT and SURF for alpine meadow image stitching. In addition, Transformer has great application potential in grassland image detection and introducing task prefix and sparse in pre-training enhances the model’s robustness. The AP value of the Am-mask model with Transformer was as high as 95.4%, about 10% higher than that of the original CNN models. In the experiment with unstitched images, the average precision of the eight trials was 95.16%, the average recall was 95.13%, and the average F1 value was 95.14%. For stitched images, the average precision, recall, and F1 value of the eight trials were 91.83%, 91.81%, and 91.82%, respectively. It was proved that the proposed method could save the inference cost of the model under the condition of ensuring the detection effect. This study may contribute to grassland environmental protection in alpine meadows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助生产队的建设者采纳,获得10
1秒前
TGU完成签到,获得积分10
2秒前
huan发布了新的文献求助10
2秒前
苹果千筹完成签到,获得积分20
2秒前
Evooolet发布了新的文献求助10
3秒前
Coffee完成签到,获得积分10
3秒前
D1fficulty完成签到,获得积分10
4秒前
哒哒哒完成签到,获得积分20
4秒前
4秒前
桐桐发布了新的文献求助20
4秒前
甜美的秋尽完成签到 ,获得积分10
4秒前
5秒前
6秒前
小刺猬完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
guo_a_n完成签到,获得积分10
9秒前
惜风发布了新的文献求助30
9秒前
阔达听寒完成签到,获得积分10
9秒前
苏卿应助22采纳,获得10
11秒前
11秒前
阔达的凡完成签到 ,获得积分10
11秒前
12秒前
12秒前
cc发布了新的文献求助10
12秒前
Evooolet完成签到,获得积分10
12秒前
zyq发布了新的文献求助10
12秒前
落落完成签到,获得积分20
13秒前
拼搏马里奥完成签到,获得积分10
13秒前
科研小白发布了新的文献求助10
13秒前
l玖应助last炫神丶采纳,获得10
14秒前
SciGPT应助B612小行星采纳,获得10
14秒前
chem完成签到,获得积分10
15秒前
ldd完成签到,获得积分10
15秒前
16秒前
无限的雨梅完成签到,获得积分10
16秒前
斯文败类应助考研小白采纳,获得10
16秒前
日落完成签到,获得积分10
17秒前
NexusExplorer应助彦祖采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847