A Network Medical Framework based on Inflammatory Genes to Identify Drug Candidates for Abdominal Aortic Aneurysms

药品 医学 免疫系统 基因 疾病 细胞 计算生物学 药理学 生物 免疫学 内科学 遗传学
作者
Bing Wang,X. Y. Niu
出处
期刊:Current Molecular Pharmacology [Bentham Science]
卷期号:17 (1) 被引量:5
标识
DOI:10.2174/1874467217666230517104426
摘要

Background: Clinically, abdominal aortic aneurysms (AAA) can be treated with surgical intervention, but there is currently no effective drug for the disease. Methods: This study analyzed the biomedical data of single-cell RNA sequencing (scRNA-seq), RNA-seq and the network medical data of drug-target interaction as well as protein-protein interaction to identify key targets and potential drug compounds of AAA. Results: Firstly, we identified 10 types of cells from AAA and nonaneurysmal control samples and screened monocyte, mast cell, smooth muscle cell and 327 genes showing significant differences between non-dilated PVATs and dilated PVATs. To further explore the association of three types of cells in AAA, we screened the common DEGs associated with the three types of cells and then identified 10 potential therapeutic targets for AAA. SLC2A3 and IER3 were the key targets that were the most closely related to immune score and significantly related to inflammatory pathways. We then designed a network-based proximity measure to identify potential drugs targeting SLC2A3. Finally, with computer simulation, we found that the compound with the highest affinity to SLC2A3 protein was DB08213, which was embedded into the SLC2A3 protein cavity and formed close contact with various amino acid residues, and was stable during the 100-ns MD simulation. Conclusions: This study provided a computational framework for drug design and development. It revealed key targets and potential therapeutic drug compounds for AAA, which might contribute to the drug development for AAA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
囡囡完成签到,获得积分10
1秒前
边宇发布了新的文献求助10
1秒前
Ying莹完成签到,获得积分10
1秒前
aizhujun完成签到,获得积分20
1秒前
甜甜亦巧完成签到,获得积分10
1秒前
王啦啦发布了新的文献求助10
1秒前
2秒前
热心的易烟完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
泡泡完成签到 ,获得积分10
4秒前
cc发布了新的文献求助10
4秒前
Anthony完成签到,获得积分10
4秒前
4秒前
4秒前
王欣蔚完成签到 ,获得积分10
4秒前
4秒前
似水年华发布了新的文献求助10
5秒前
tmj200102完成签到,获得积分20
5秒前
睡到自然醒完成签到 ,获得积分10
5秒前
Ying莹发布了新的文献求助10
5秒前
lan发布了新的文献求助10
5秒前
Affenyi发布了新的文献求助10
6秒前
NexusExplorer应助舒服的电灯采纳,获得10
6秒前
夏稚完成签到,获得积分10
6秒前
皮皮怪完成签到,获得积分10
6秒前
6秒前
冷静的平头哥完成签到,获得积分10
7秒前
IV完成签到 ,获得积分10
7秒前
MF完成签到,获得积分10
7秒前
开朗向彤发布了新的文献求助10
8秒前
jaslek发布了新的文献求助10
8秒前
爆米花应助朴素的寒天采纳,获得10
8秒前
NexusExplorer应助流星采纳,获得10
8秒前
大个应助林白采纳,获得50
8秒前
9秒前
泡泡关注了科研通微信公众号
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721