A Network Medical Framework based on Inflammatory Genes to Identify Drug Candidates for Abdominal Aortic Aneurysms

药品 医学 免疫系统 基因 疾病 细胞 计算生物学 药理学 生物 免疫学 内科学 遗传学
作者
Bing Wang,X. Y. Niu
出处
期刊:Current Molecular Pharmacology [Bentham Science]
卷期号:17 (1) 被引量:5
标识
DOI:10.2174/1874467217666230517104426
摘要

Background: Clinically, abdominal aortic aneurysms (AAA) can be treated with surgical intervention, but there is currently no effective drug for the disease. Methods: This study analyzed the biomedical data of single-cell RNA sequencing (scRNA-seq), RNA-seq and the network medical data of drug-target interaction as well as protein-protein interaction to identify key targets and potential drug compounds of AAA. Results: Firstly, we identified 10 types of cells from AAA and nonaneurysmal control samples and screened monocyte, mast cell, smooth muscle cell and 327 genes showing significant differences between non-dilated PVATs and dilated PVATs. To further explore the association of three types of cells in AAA, we screened the common DEGs associated with the three types of cells and then identified 10 potential therapeutic targets for AAA. SLC2A3 and IER3 were the key targets that were the most closely related to immune score and significantly related to inflammatory pathways. We then designed a network-based proximity measure to identify potential drugs targeting SLC2A3. Finally, with computer simulation, we found that the compound with the highest affinity to SLC2A3 protein was DB08213, which was embedded into the SLC2A3 protein cavity and formed close contact with various amino acid residues, and was stable during the 100-ns MD simulation. Conclusions: This study provided a computational framework for drug design and development. It revealed key targets and potential therapeutic drug compounds for AAA, which might contribute to the drug development for AAA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴答答发布了新的文献求助10
刚刚
qinyue完成签到,获得积分10
1秒前
宝宝发布了新的文献求助10
1秒前
清河海风完成签到,获得积分10
1秒前
小巧寻双完成签到,获得积分20
1秒前
1秒前
华仔应助畅快城采纳,获得10
2秒前
431564发布了新的文献求助10
2秒前
2秒前
nbbyysnbb应助MY采纳,获得10
2秒前
3秒前
手可摘星辰不去高声语完成签到,获得积分10
3秒前
3秒前
彭于晏应助枝枝桃桃采纳,获得10
3秒前
cyrong发布了新的文献求助10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
顾矜应助香蕉幻桃采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
大个应助10采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
jdjakdjaslk发布了新的文献求助10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
5秒前
dryyu应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768236
求助须知:如何正确求助?哪些是违规求助? 5574243
关于积分的说明 15417573
捐赠科研通 4902019
什么是DOI,文献DOI怎么找? 2637554
邀请新用户注册赠送积分活动 1585446
关于科研通互助平台的介绍 1540728