A Network Medical Framework based on Inflammatory Genes to Identify Drug Candidates for Abdominal Aortic Aneurysms

药品 医学 免疫系统 基因 疾病 细胞 计算生物学 药理学 生物 免疫学 内科学 遗传学
作者
Bing Wang,X. Y. Niu
出处
期刊:Current Molecular Pharmacology [Bentham Science]
卷期号:17 (1) 被引量:5
标识
DOI:10.2174/1874467217666230517104426
摘要

Background: Clinically, abdominal aortic aneurysms (AAA) can be treated with surgical intervention, but there is currently no effective drug for the disease. Methods: This study analyzed the biomedical data of single-cell RNA sequencing (scRNA-seq), RNA-seq and the network medical data of drug-target interaction as well as protein-protein interaction to identify key targets and potential drug compounds of AAA. Results: Firstly, we identified 10 types of cells from AAA and nonaneurysmal control samples and screened monocyte, mast cell, smooth muscle cell and 327 genes showing significant differences between non-dilated PVATs and dilated PVATs. To further explore the association of three types of cells in AAA, we screened the common DEGs associated with the three types of cells and then identified 10 potential therapeutic targets for AAA. SLC2A3 and IER3 were the key targets that were the most closely related to immune score and significantly related to inflammatory pathways. We then designed a network-based proximity measure to identify potential drugs targeting SLC2A3. Finally, with computer simulation, we found that the compound with the highest affinity to SLC2A3 protein was DB08213, which was embedded into the SLC2A3 protein cavity and formed close contact with various amino acid residues, and was stable during the 100-ns MD simulation. Conclusions: This study provided a computational framework for drug design and development. It revealed key targets and potential therapeutic drug compounds for AAA, which might contribute to the drug development for AAA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边港洋发布了新的文献求助10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
笨男孩发布了新的文献求助10
4秒前
5秒前
5秒前
wanghao发布了新的文献求助10
5秒前
陈湫完成签到,获得积分10
6秒前
田様应助等待的寒松采纳,获得10
6秒前
害怕的白竹完成签到,获得积分10
7秒前
随心完成签到,获得积分10
7秒前
怕孤单的嚣完成签到,获得积分20
7秒前
lcxw1224完成签到,获得积分10
7秒前
8秒前
长常九久发布了新的文献求助10
9秒前
15503116087发布了新的文献求助10
9秒前
大个应助初之采纳,获得10
10秒前
te发布了新的文献求助10
10秒前
边港洋完成签到,获得积分10
12秒前
12秒前
凤羽发布了新的文献求助10
13秒前
灵巧听露发布了新的文献求助10
13秒前
可爱的函函应助猫猫无敌采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
17秒前
爆米花应助刁弘睿采纳,获得10
17秒前
17秒前
17秒前
缥缈海云完成签到,获得积分10
17秒前
18秒前
斯文败类应助沙场秋点兵采纳,获得10
19秒前
123完成签到,获得积分10
19秒前
20秒前
无辜问玉发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425