Unifying Dual-Attention and Siamese Transformer Network for Full-Reference Image Quality Assessment

计算机科学 人工智能 图像质量 模式识别(心理学) 失真(音乐) 变压器 计算机视觉 图像(数学) 计算机网络 量子力学 物理 电压 放大器 带宽(计算)
作者
Zhenjun Tang,Zhiyuan Chen,Zhixin Li,Bineng Zhong,Xianquan Zhang,Xinpeng Zhang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (6): 1-24 被引量:15
标识
DOI:10.1145/3597434
摘要

Image Quality Assessment (IQA) is a critical task of computer vision. Most Full-Reference (FR) IQA methods have limitation in the accurate prediction of perceptual qualities of the traditional distorted images and the Generative Adversarial Networks (GANs) based distorted images. To address this issue, we propose a novel method by Unifying Dual-Attention and Siamese Transformer Network (UniDASTN) for FR-IQA. An important contribution is the spatial attention module composed of a Siamese Transformer Network and a feature fusion block. It can focus on significant regions and effectively maps the perceptual differences between the reference and distorted images to a latent distance for distortion evaluation. Another contribution is the dual-attention strategy that exploits channel attention and spatial attention to aggregate features for enhancing distortion sensitivity. In addition, a novel loss function is designed by jointly exploiting Mean Square Error (MSE), bidirectional Kullback–Leibler divergence, and rank order of quality scores. The designed loss function can offer stable training and thus enables the proposed UniDASTN to effectively learn visual perceptual image quality. Extensive experiments on standard IQA databases are conducted to validate the effectiveness of the proposed UniDASTN. The IQA results demonstrate that the proposed UniDASTN outperforms some state-of-the-art FR-IQA methods on the LIVE, CSIQ, TID2013, and PIPAL databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiemy完成签到,获得积分10
1秒前
2秒前
吃鱼的猫发布了新的文献求助10
4秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
诚心断天完成签到,获得积分10
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
千跃应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
现代的访曼应助科研通管家采纳,获得150
6秒前
顾矜应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
meng17应助科研通管家采纳,获得10
7秒前
znn发布了新的文献求助10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
现代的访曼应助科研通管家采纳,获得150
7秒前
7秒前
千跃应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
zhj完成签到,获得积分10
8秒前
10秒前
帕金森完成签到,获得积分10
11秒前
唐军完成签到,获得积分10
14秒前
憨憨发布了新的文献求助10
14秒前
15秒前
五十一笑声完成签到,获得积分10
15秒前
daisies应助ZM采纳,获得20
16秒前
隐形问萍完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859