Estimation of land surface temperature from AMSR2 microwave brightness temperature using machine learning methods

亮度温度 遥感 环境科学 微波食品加热 亮度 估计 计算机科学 气象学 地质学 物理 光学 电信 管理 经济
作者
Wenjing Han,Si‐Bo Duan,Haijing Tian,Yihua Lian
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (19-20): 7212-7233 被引量:6
标识
DOI:10.1080/01431161.2023.2208714
摘要

Passive microwave has been used in land surface temperature (LST) inversion because of its all-weather availability. This paper proposed a LST retrieval method based on machine learning by integrating multiple datasets, including Advanced Microwave Scanning Radiometer 2 (AMSR2), Global Forecast System (GFS) reanalysis datasets, ERA5-land reanalysis products, Moderate Resolution Imaging Spectroradiometer (MODIS) products, Shuttle Radar Topography Mission (SRTM), and in situ measurements. Four algorithms, including linear regression (LR), random forests (RF), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), were explored and compared by ten-fold cross-validation. The best-performing LightGBM algorithm was applied to train the model, and day and night models were developed separately. The models were validated using in situ LST of training stations from 2017 to 2019. The day and night models root mean square error (RMSE) are 3.23 and 2.43 K, and that of bias are −0.24 and −0.36 K, respectively. The in situ LST from 2015 to 2019 that not used for model training were selected to further validate both day and night models, with RMSE = 5.42 and 2.91 K, and bias = −0.60 and 0.06 K, respectively. Validation results indicated that the temporal performance of the models is better than those of spatial performance and the night model performed better than the day model. Additionally, model performance in different seasons and land cover types demonstrated the robustness of the models over complicated surfaces. These results suggest that the LightGBM algorithm has good accuracy in LST estimation, making it possible to apply for the generation of LST at a global scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助小虫的采纳,获得10
刚刚
chicony发布了新的文献求助10
刚刚
漂亮海蓝发布了新的文献求助20
刚刚
orixero应助昔年采纳,获得10
刚刚
Feng发布了新的文献求助10
1秒前
和色也完成签到,获得积分10
1秒前
Byron完成签到,获得积分10
1秒前
工位瘤子完成签到,获得积分10
1秒前
深情安青应助赫连砖家采纳,获得10
2秒前
隐世求开完成签到,获得积分10
2秒前
隐形曼青应助GuoJJ采纳,获得10
3秒前
mm发布了新的文献求助10
3秒前
3秒前
Orange应助DXL采纳,获得10
3秒前
周四一完成签到,获得积分10
3秒前
4秒前
轻松豌豆应助《子非鱼》采纳,获得10
4秒前
xiaohai发布了新的文献求助10
4秒前
大宇发布了新的文献求助10
4秒前
桐桐应助定海乾坤采纳,获得10
4秒前
LlLly发布了新的文献求助10
5秒前
6秒前
赘婿应助张晓娜采纳,获得10
6秒前
苻人英发布了新的文献求助30
7秒前
SYLH应助自信的冬日采纳,获得10
7秒前
8秒前
8秒前
20250212完成签到,获得积分10
8秒前
苗条新筠完成签到 ,获得积分10
9秒前
和色也发布了新的文献求助20
9秒前
传奇3应助lll采纳,获得10
9秒前
10秒前
完美世界应助柚子采纳,获得10
10秒前
fffan完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
yuan发布了新的文献求助10
12秒前
寂寞致幻发布了新的文献求助10
12秒前
英姑应助123456采纳,获得10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732051
求助须知:如何正确求助?哪些是违规求助? 3276417
关于积分的说明 9996913
捐赠科研通 2991929
什么是DOI,文献DOI怎么找? 1641951
邀请新用户注册赠送积分活动 780017
科研通“疑难数据库(出版商)”最低求助积分说明 748677