Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 大地测量学 古生物学 地理 电气工程 生物
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怠慢发布了新的文献求助10
刚刚
左耳钉应助贪玩小蘑菇采纳,获得10
刚刚
胖打小张完成签到,获得积分10
1秒前
WML完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
隐形曼青应助高兴的海亦采纳,获得10
2秒前
FUN0827发布了新的文献求助10
2秒前
研友_VZG7GZ应助高兴的海亦采纳,获得10
2秒前
3秒前
隐形曼青应助高兴的海亦采纳,获得10
3秒前
隐形曼青应助高兴的海亦采纳,获得10
3秒前
所所应助高兴的海亦采纳,获得10
3秒前
ding应助高兴的海亦采纳,获得10
3秒前
香蕉觅云应助高兴的海亦采纳,获得10
3秒前
3秒前
CipherSage应助高兴的海亦采纳,获得10
3秒前
MP发布了新的文献求助10
3秒前
小小鱼完成签到 ,获得积分10
3秒前
Tian发布了新的文献求助10
4秒前
浮浮世世发布了新的文献求助10
6秒前
wujingshuai完成签到,获得积分10
6秒前
勤恳康乃馨完成签到,获得积分20
6秒前
跳跃的萧发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
脑洞疼应助高兴的海亦采纳,获得10
10秒前
Orange应助高兴的海亦采纳,获得10
10秒前
科研通AI2S应助高兴的海亦采纳,获得10
10秒前
桐桐应助高兴的海亦采纳,获得10
10秒前
情怀应助高兴的海亦采纳,获得10
10秒前
英姑应助高兴的海亦采纳,获得10
10秒前
田様应助高兴的海亦采纳,获得10
10秒前
zhy完成签到 ,获得积分10
10秒前
10秒前
李爱国应助高兴的海亦采纳,获得10
10秒前
义气翩跹发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425091
求助须知:如何正确求助?哪些是违规求助? 4539235
关于积分的说明 14166259
捐赠科研通 4456389
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412539