重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 大地测量学 古生物学 地理 电气工程 生物
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助7890733采纳,获得10
刚刚
魏阳完成签到,获得积分10
1秒前
小张完成签到 ,获得积分10
1秒前
11发布了新的文献求助10
1秒前
1秒前
1秒前
Ava应助SCi编辑采纳,获得10
3秒前
折光完成签到,获得积分10
3秒前
难过含烟完成签到 ,获得积分10
4秒前
666发布了新的文献求助10
4秒前
achulw发布了新的文献求助10
5秒前
都安完成签到,获得积分10
5秒前
6秒前
迷路的寻云完成签到 ,获得积分10
6秒前
treeman发布了新的文献求助10
7秒前
7秒前
7秒前
天天快乐应助胖小羊采纳,获得10
7秒前
7秒前
tdw完成签到,获得积分10
8秒前
镓氧锌钇铀应助一百分采纳,获得20
8秒前
虚心的冷松完成签到,获得积分10
10秒前
迷路的寻云关注了科研通微信公众号
10秒前
11秒前
zhscu发布了新的文献求助10
11秒前
kk发布了新的文献求助10
12秒前
12秒前
xdli发布了新的文献求助10
12秒前
赘婿应助虚心的冷松采纳,获得10
13秒前
achulw完成签到,获得积分10
13秒前
华理附院孙文博完成签到 ,获得积分10
14秒前
14秒前
14秒前
16秒前
小白发布了新的文献求助10
16秒前
17秒前
Jasper应助殷楷霖采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
大意的雪珍完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737