亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 古生物学 大地测量学 地理 生物 电气工程
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joanna完成签到,获得积分10
17秒前
科研通AI5应助lj采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
大川页完成签到,获得积分10
2分钟前
lanxinge完成签到 ,获得积分10
3分钟前
玄音完成签到,获得积分10
4分钟前
汉堡包应助通义千问采纳,获得10
4分钟前
隐形曼青应助小米辣采纳,获得30
5分钟前
5分钟前
通义千问发布了新的文献求助10
6分钟前
柔弱藏今发布了新的文献求助10
6分钟前
小米辣完成签到,获得积分10
6分钟前
6分钟前
吃了就会胖完成签到 ,获得积分10
6分钟前
小米辣发布了新的文献求助30
6分钟前
dream完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
丫子天空发布了新的文献求助10
7分钟前
7分钟前
lzxbarry应助andrele采纳,获得30
7分钟前
燕子完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
呆萌的鼠标完成签到 ,获得积分0
9分钟前
9分钟前
似水无痕完成签到,获得积分10
9分钟前
Anto完成签到,获得积分10
9分钟前
kuoping完成签到,获得积分0
9分钟前
李健应助科研通管家采纳,获得10
9分钟前
丫子天空完成签到,获得积分20
9分钟前
QCB完成签到 ,获得积分10
10分钟前
wodetaiyangLLL完成签到 ,获得积分10
10分钟前
科研通AI5应助彭日晓采纳,获得10
10分钟前
ZHANG完成签到 ,获得积分10
11分钟前
tenta完成签到,获得积分10
11分钟前
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569068
求助须知:如何正确求助?哪些是违规求助? 3991392
关于积分的说明 12355756
捐赠科研通 3663569
什么是DOI,文献DOI怎么找? 2019007
邀请新用户注册赠送积分活动 1053435
科研通“疑难数据库(出版商)”最低求助积分说明 940978