Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 大地测量学 古生物学 地理 电气工程 生物
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助从今伴君行采纳,获得10
刚刚
冒如怿发布了新的文献求助30
刚刚
米奇完成签到,获得积分10
刚刚
刚刚
2秒前
3秒前
jjccc发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
czz014完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
10秒前
我是老大应助Wiki采纳,获得10
10秒前
磊磊发布了新的文献求助10
10秒前
hhh发布了新的文献求助10
10秒前
日落收藏家完成签到 ,获得积分10
11秒前
汉堡包应助Antibody6采纳,获得10
11秒前
Or发布了新的文献求助10
12秒前
14秒前
Akim应助直率的秋尽采纳,获得30
15秒前
bie123发布了新的文献求助10
15秒前
暴走芭比发布了新的文献求助10
15秒前
动听衬衫发布了新的文献求助10
15秒前
FashionBoy应助执行正义采纳,获得10
16秒前
0000完成签到 ,获得积分10
16秒前
17秒前
科研通AI6应助磊磊采纳,获得10
18秒前
19秒前
阿拉完成签到 ,获得积分10
20秒前
九木德发布了新的文献求助10
20秒前
慕青应助七慕凉采纳,获得10
21秒前
LX完成签到 ,获得积分10
21秒前
二十六画生完成签到,获得积分10
23秒前
七一发布了新的文献求助10
23秒前
jjdbqml发布了新的文献求助10
23秒前
23秒前
七慕凉应助木土采纳,获得10
23秒前
橙汁发布了新的文献求助10
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742