Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 古生物学 大地测量学 地理 生物 电气工程
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
君故发布了新的文献求助10
刚刚
李博士完成签到,获得积分10
1秒前
fanghongjian发布了新的文献求助10
1秒前
vv完成签到 ,获得积分10
1秒前
2秒前
4秒前
晓畅完成签到,获得积分10
6秒前
科研通AI6.1应助对称破缺采纳,获得10
9秒前
刘十一完成签到 ,获得积分10
9秒前
9秒前
慢半拍完成签到,获得积分10
9秒前
von完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
11秒前
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
17263365721完成签到 ,获得积分10
11秒前
冬天的回忆完成签到 ,获得积分10
11秒前
风清扬应助科研通管家采纳,获得30
12秒前
李健应助科研通管家采纳,获得10
12秒前
dangdang应助科研通管家采纳,获得40
12秒前
12秒前
Frank应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
13秒前
Frank应助科研通管家采纳,获得10
13秒前
13秒前
烟花应助科研通管家采纳,获得10
13秒前
泽松应助科研通管家采纳,获得10
13秒前
13秒前
大个应助科研通管家采纳,获得50
13秒前
量子星尘发布了新的文献求助10
13秒前
小二郎应助Narcissus采纳,获得10
13秒前
寒冷的小熊猫完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060