Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 大地测量学 古生物学 地理 电气工程 生物
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanxiqianxia完成签到,获得积分10
刚刚
俟天晴完成签到 ,获得积分10
2秒前
八十八夜的茶摘完成签到,获得积分10
5秒前
zzzllove完成签到 ,获得积分10
7秒前
ChatGPT完成签到,获得积分10
8秒前
11秒前
w婷完成签到 ,获得积分10
11秒前
lingkai完成签到 ,获得积分10
13秒前
我请问呢发布了新的文献求助10
19秒前
娃娃菜妮完成签到 ,获得积分10
23秒前
wcy完成签到 ,获得积分10
27秒前
MM发布了新的文献求助30
28秒前
优娜完成签到 ,获得积分10
30秒前
CipherSage应助健壮念寒采纳,获得10
30秒前
37秒前
小二郎应助英俊智宸采纳,获得10
47秒前
斯文败类应助SuyingGuo采纳,获得10
47秒前
量子星尘发布了新的文献求助10
49秒前
花海完成签到 ,获得积分10
54秒前
55秒前
56秒前
MM发布了新的文献求助30
59秒前
英俊智宸发布了新的文献求助10
59秒前
1分钟前
sci完成签到 ,获得积分10
1分钟前
Strongly发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
Aluhaer应助科研通管家采纳,获得150
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
清爽尔岚完成签到 ,获得积分10
1分钟前
二中所长发布了新的文献求助10
1分钟前
guo完成签到,获得积分10
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
冬雪完成签到 ,获得积分10
1分钟前
qing完成签到 ,获得积分10
1分钟前
1分钟前
cmh完成签到 ,获得积分10
1分钟前
英俊智宸完成签到,获得积分10
1分钟前
韭菜盒子发布了新的文献求助10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139327
求助须知:如何正确求助?哪些是违规求助? 4338303
关于积分的说明 13512484
捐赠科研通 4177497
什么是DOI,文献DOI怎么找? 2290823
邀请新用户注册赠送积分活动 1291325
关于科研通互助平台的介绍 1233611