Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 大地测量学 古生物学 地理 电气工程 生物
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jessia完成签到,获得积分10
刚刚
刚刚
马铃薯完成签到 ,获得积分10
1秒前
2秒前
Motanka发布了新的文献求助10
2秒前
2秒前
2秒前
Lucas应助斯文觅珍采纳,获得10
4秒前
4秒前
又又发布了新的文献求助30
5秒前
赘婿应助yy采纳,获得10
5秒前
Befly完成签到,获得积分10
5秒前
Olivia发布了新的文献求助10
6秒前
zzyh发布了新的文献求助20
6秒前
7秒前
7秒前
Orange应助ddddd采纳,获得10
7秒前
Neu发布了新的文献求助10
7秒前
讨厌麻烦的小宏完成签到,获得积分10
8秒前
ningjianing完成签到,获得积分10
8秒前
MM完成签到,获得积分20
8秒前
wyc完成签到,获得积分10
8秒前
8秒前
何平完成签到,获得积分10
9秒前
9秒前
虚拟的妍完成签到,获得积分10
9秒前
9秒前
cgx发布了新的文献求助10
9秒前
小柠檬完成签到,获得积分10
9秒前
岁月轮回发布了新的文献求助10
9秒前
11秒前
不懂白完成签到 ,获得积分10
11秒前
XXHONG完成签到,获得积分20
11秒前
朱朱珠珠应助动听的凡白采纳,获得10
11秒前
12秒前
12秒前
13秒前
xiangguoSun完成签到,获得积分10
13秒前
sun发布了新的文献求助10
13秒前
所所应助XXHONG采纳,获得30
15秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382464
求助须知:如何正确求助?哪些是违规求助? 4505584
关于积分的说明 14022307
捐赠科研通 4414979
什么是DOI,文献DOI怎么找? 2425293
邀请新用户注册赠送积分活动 1418096
关于科研通互助平台的介绍 1396102