Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in Brazil: A time-series case

电价预测 背景(考古学) 商业化 水准点(测量) 电力市场 计算机科学 能量建模 计量经济学 预测建模 能量(信号处理) 机器学习 经济 工程类 业务 统计 数学 营销 大地测量学 古生物学 地理 电气工程 生物
作者
Tiago Silveira Gontijo,Rodrigo Barbosa de Santis,Marcelo Azevedo Costa
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (3) 被引量:1
标识
DOI:10.1063/5.0144873
摘要

The global energy market has significantly developed in recent years; proof of this is the creation and promotion of smart grids and technical advances in energy commercialization and transmission. Specifically in the Brazilian context, with the recent modernization of the electricity sector, energy trading prices, previously published on a weekly frequency, are now available on an hourly domain. In this context, the definition and forecasting of prices become increasingly important factors for the economic and financial viability of energy projects. In this scenario of changes in the local regulatory framework, there is a lack of publications based on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This method searches for similarity patterns in time series and, in previous investigations, showed competitive advantages concerning established forecasting methods. This research aims to test the accuracy of the DTSF method against classical statistical models and machine learning. We used the short-term prices of electricity in Brazil, made available by the Electric Energy Commercialization Chamber. The new DTSF model showed the best predictive performance compared to both the statistical and machine learning models. The DTSF performance was superior considering the evaluation metrics utilized in this paper. We verified that the predictions made by the DTSF showed less variability compared to the other models. Finally, we noticed that there is not an ideal model for all predictive 24 steps ahead forecasts, but there are better models at certain times of the day.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jared应助慕小宇采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
DD应助科研通管家采纳,获得20
1秒前
mcy完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
爆米花应助RC_Wang采纳,获得10
2秒前
大宝君应助jianghs采纳,获得30
3秒前
gaga发布了新的文献求助10
4秒前
哈哈发布了新的文献求助10
4秒前
4秒前
木头人完成签到,获得积分10
6秒前
小马甲应助槑槑姊采纳,获得10
6秒前
SJJ应助黎明采纳,获得10
6秒前
鹊起惊梦发布了新的文献求助10
8秒前
111发布了新的文献求助10
9秒前
10秒前
星辰大海应助唠叨的可燕采纳,获得10
12秒前
13秒前
小柯基学从零学起完成签到 ,获得积分10
13秒前
14秒前
斧王发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
鹊起惊梦完成签到,获得积分10
17秒前
kunkun发布了新的文献求助10
18秒前
18秒前
华仔应助niko采纳,获得10
19秒前
科研通AI6应助niko采纳,获得10
19秒前
可爱的函函应助niko采纳,获得10
19秒前
英俊的铭应助niko采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569633
求助须知:如何正确求助?哪些是违规求助? 4654420
关于积分的说明 14710265
捐赠科研通 4595934
什么是DOI,文献DOI怎么找? 2522161
邀请新用户注册赠送积分活动 1493390
关于科研通互助平台的介绍 1463987