ToupleGDD: A Fine-Designed Solution of Influence Maximization by Deep Reinforcement Learning

强化学习 最大化 一般化 计算机科学 人工智能 启发式 人工神经网络 深度学习 图形 嵌入 数学优化 理论计算机科学 数学 数学分析
作者
Tiantian Chen,Siwen Yan,Jianxiong Guo,Weili Wu
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2210-2221 被引量:27
标识
DOI:10.1109/tcss.2023.3272331
摘要

Aiming at selecting a small subset of nodes with maximum influence on networks, the influence maximization (IM) problem has been extensively studied. Since it is #P-hard to compute the influence spread given a seed set, the state-of-the-art methods, including heuristic and approximation algorithms, are faced with great difficulties such as theoretical guarantee, time efficiency, generalization, and so on. This makes it unable to adapt to large-scale networks and more complex applications. On the other side, with the latest achievements of deep reinforcement learning (DRL) in artificial intelligence and other fields, lots of work have been focused on exploiting DRL to solve combinatorial optimization (CO) problems. Inspired by this, we propose a novel end-to-end DRL framework, ToupleGDD, to address the IM problem in this article, which incorporates three coupled graph neural networks (GNNs) for network embedding and double deep $Q$ -networks (DQNs) for parameters learning. Previous efforts to solve the IM problem with DRL trained their models on subgraphs of the whole network and then tested them on the whole graph, which makes the performance of their models unstable among different networks. However, our model is trained on several small randomly generated graphs with a small budget and tested on completely different networks under various large budgets, which can obtain results very close to IMM and better results than OPIM-C on several datasets and shows strong generalization ability. Finally, we conduct a large number of experiments on synthetic and realistic datasets and experimental results prove the effectiveness and superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
刚刚
2秒前
老Mark完成签到,获得积分10
2秒前
friend516完成签到 ,获得积分10
3秒前
时来运转发布了新的文献求助10
3秒前
ketty完成签到,获得积分10
4秒前
m7m完成签到,获得积分10
4秒前
科研通AI5应助细心冬卉采纳,获得10
4秒前
科研通AI5应助amateur采纳,获得10
4秒前
kajikaji完成签到,获得积分10
6秒前
solum关注了科研通微信公众号
6秒前
6秒前
慕青应助123123采纳,获得30
6秒前
yl完成签到,获得积分10
7秒前
丘比特应助m7m采纳,获得10
8秒前
时来运转完成签到,获得积分10
9秒前
领导范儿应助张磊采纳,获得10
10秒前
糖宝完成签到 ,获得积分10
11秒前
12秒前
14秒前
15秒前
小杨完成签到,获得积分10
15秒前
好好学习发布了新的文献求助10
16秒前
16秒前
你说要叫啥完成签到,获得积分10
16秒前
18秒前
欢欢完成签到,获得积分10
18秒前
rockxie完成签到,获得积分10
19秒前
amateur完成签到,获得积分0
20秒前
14完成签到,获得积分10
20秒前
SYLH应助苹果千秋采纳,获得10
20秒前
xuan完成签到,获得积分20
21秒前
21秒前
cokk完成签到,获得积分10
21秒前
合适洋葱发布了新的文献求助20
23秒前
踏实冰棍发布了新的文献求助10
23秒前
日川冈坂完成签到 ,获得积分10
23秒前
万能图书馆应助好好学习采纳,获得10
23秒前
24秒前
Werner完成签到 ,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761464
求助须知:如何正确求助?哪些是违规求助? 3305383
关于积分的说明 10133532
捐赠科研通 3019253
什么是DOI,文献DOI怎么找? 1658089
邀请新用户注册赠送积分活动 791852
科研通“疑难数据库(出版商)”最低求助积分说明 754657