Targeted passivation and optimized interfacial carrier dynamics improving the efficiency and stability of hole transport layer-free narrow-bandgap perovskite solar cells

钝化 钙钛矿(结构) 材料科学 光电子学 带隙 晶界 图层(电子) 能量转换效率 载流子寿命 电极 化学物理 纳米技术 化学工程 化学 复合材料 物理化学 工程类 微观结构
作者
Xueqing Chang,Jun‐Xing Zhong,Guo Yang,Ying Tan,Li Gong,Xing Ni,Yujin Ji,Youyong Li,Guodong Zhang,Yifan Zheng,Yuchuan Shao,Jie Zhou,Zhibin Yang,Lianzhou Wang,Wu‐Qiang Wu
出处
期刊:Science Bulletin [Elsevier]
卷期号:68 (12): 1271-1282 被引量:28
标识
DOI:10.1016/j.scib.2023.05.012
摘要

Narrow-bandgap mixed Sn-Pb perovskite solar cells (PSCs) have showcased great potential to approach the Shockley-Queisser limit. Nevertheless, the practical application and long-term deployment of mixed Sn-Pb PSCs are still largely impeded by the rapid oxidation of Sn2+ ions and under-optimized carrier transport layer (CTL)/perovskite interfaces that would inevitably incur serious interfacial charge recombination and device performance degradation. Herein, we successfully removed the hole transport layer (HTL) by incorporating a small amount of organic phosphonic acid molecules into perovskites, which could preferably interact with Sn2+ ions (relative to Pb2+ analogues) at the grain boundaries (GBs) throughout the perovskite film thickness via coordination bonding, thus effectively retarding the oxidation of Sn2+, passivating the defects and suppressing the non-radiative recombination. Targeted modification effectively reinforced built-in potential by ∼100 mV, and favorably induced energy level cascade, thus accelerating spatial charge separation and facilitating the hole extraction from perovskite layer to underlying conductive electrodes even in the absence of HTL. Consequently, enhanced power conversion efficiencies up to 20.21% have been achieved, which is the record efficiency for the HTL-free mixed Sn-Pb PSCs, accompanied by a decent photovoltage of 0.87 V and improved long-term stability over 2400 h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jimmy发布了新的文献求助40
1秒前
六六完成签到 ,获得积分10
1秒前
an完成签到,获得积分10
2秒前
寜1完成签到,获得积分10
2秒前
MMM完成签到,获得积分10
2秒前
2秒前
小二郎应助Zhang采纳,获得10
2秒前
斯文的灵雁完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
Leon应助科研通管家采纳,获得100
3秒前
丘比特应助帅玉玉采纳,获得10
3秒前
明天更好发布了新的文献求助10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
剑兰先生应助科研通管家采纳,获得200
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
4秒前
随便发布了新的文献求助10
4秒前
kingwill应助科研通管家采纳,获得20
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
an发布了新的文献求助10
5秒前
wjw关闭了wjw文献求助
5秒前
果汁发布了新的文献求助30
6秒前
6秒前
沉默的以山完成签到,获得积分20
6秒前
6秒前
怕黑的班完成签到,获得积分10
6秒前
LL完成签到,获得积分10
7秒前
想摆烂发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759