Collaborative filtering recommendations based on multi-factor random walks

协同过滤 计算机科学 随机游动 推荐系统 相似性(几何) 偏爱 滤波器(信号处理) 数据挖掘 可信赖性 随机森林 因子(编程语言) 人工智能 机器学习 情报检索 统计 数学 计算机视觉 计算机安全 图像(数学) 程序设计语言
作者
Liangmin Guo,Kaixuan Luan,Li Sun,Yonglong Luo,Xiaoyao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106409-106409 被引量:4
标识
DOI:10.1016/j.engappai.2023.106409
摘要

Using trust relationships can improve the accuracy of recommendation systems; however, it is affected by data sparsity. Random walks can harvest the behavioral relationships between users and compensate for data sparsity. However, existing random walk methods may generate information of little value or even interference, which affects recommendation accuracy. A collaborative filter recommendation based on multi-factor random walk was proposed to address these problems. In this method, the comprehensive trust values of the current user over other users based on the rating time, user attribute preference, and number of mutual friends were computed more accurately to determine the trust neighborhood of the current user. Thus, trustworthy users with preferences similar to those of the current user were accurately and conveniently obtained to act as neighboring users, and the sparsity of the trust relationship could be alleviated. The final predicted rating of the target item was obtained using the ratings of multiple neighboring users for the target item or similar items to improve recommendation accuracy. Moreover, to avoid generating ratings that affect the prediction accuracy during the walk, a decision to stop the walk was made based on the comprehensive trust value, item similarity, and depth of the current walk, further improving the recommendation accuracy. An evaluation was performed on two datasets, and the proposed method achieved superior prediction accuracy and coverage rate even with sparse data and exhibited a high recommendation accuracy even with cold-start users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助su采纳,获得10
刚刚
刚刚
科目三应助MJQ采纳,获得30
刚刚
刚刚
慕子发布了新的文献求助20
1秒前
lumangxiaozi完成签到,获得积分10
1秒前
积极的凌波完成签到,获得积分10
1秒前
xiaxiao应助小小酥采纳,获得100
1秒前
523完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
Hupoo发布了新的文献求助10
3秒前
传奇3应助冬瓜有内涵呐采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Aurora发布了新的文献求助10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Chen发布了新的文献求助10
4秒前
prosperp应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
5秒前
伍贰肆发布了新的文献求助10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
闲听花落完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762