Collaborative filtering recommendations based on multi-factor random walks

协同过滤 计算机科学 随机游动 推荐系统 相似性(几何) 偏爱 滤波器(信号处理) 数据挖掘 可信赖性 随机森林 因子(编程语言) 人工智能 机器学习 情报检索 统计 数学 计算机视觉 图像(数学) 计算机安全 程序设计语言
作者
Liangmin Guo,Kaixuan Luan,Li Sun,Yonglong Luo,Xiaoyao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106409-106409 被引量:4
标识
DOI:10.1016/j.engappai.2023.106409
摘要

Using trust relationships can improve the accuracy of recommendation systems; however, it is affected by data sparsity. Random walks can harvest the behavioral relationships between users and compensate for data sparsity. However, existing random walk methods may generate information of little value or even interference, which affects recommendation accuracy. A collaborative filter recommendation based on multi-factor random walk was proposed to address these problems. In this method, the comprehensive trust values of the current user over other users based on the rating time, user attribute preference, and number of mutual friends were computed more accurately to determine the trust neighborhood of the current user. Thus, trustworthy users with preferences similar to those of the current user were accurately and conveniently obtained to act as neighboring users, and the sparsity of the trust relationship could be alleviated. The final predicted rating of the target item was obtained using the ratings of multiple neighboring users for the target item or similar items to improve recommendation accuracy. Moreover, to avoid generating ratings that affect the prediction accuracy during the walk, a decision to stop the walk was made based on the comprehensive trust value, item similarity, and depth of the current walk, further improving the recommendation accuracy. An evaluation was performed on two datasets, and the proposed method achieved superior prediction accuracy and coverage rate even with sparse data and exhibited a high recommendation accuracy even with cold-start users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要的一江完成签到,获得积分10
1秒前
1秒前
2秒前
Zoom完成签到,获得积分10
2秒前
2秒前
儒雅寒天完成签到,获得积分10
2秒前
白风夕月发布了新的文献求助10
3秒前
Lucas应助科研采纳,获得10
3秒前
4秒前
平淡夏槐发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
美丽猫咪发布了新的文献求助10
6秒前
儒雅寒天发布了新的文献求助10
6秒前
keyanxiaoliu发布了新的文献求助10
7秒前
zhao发布了新的文献求助10
10秒前
科研通AI5应助zhuxiansheng采纳,获得10
11秒前
焦爽发布了新的文献求助10
11秒前
白rain完成签到,获得积分10
11秒前
Zzzzccc发布了新的文献求助10
12秒前
Sylvia发布了新的文献求助30
12秒前
12秒前
烟花应助儒雅寒天采纳,获得10
12秒前
14秒前
小蘑菇应助keyanxiaoliu采纳,获得10
18秒前
Paris发布了新的文献求助10
18秒前
肉肉完成签到,获得积分10
19秒前
22秒前
25秒前
luluu完成签到,获得积分20
26秒前
量子星尘发布了新的文献求助10
28秒前
fxx2021发布了新的文献求助10
28秒前
焦爽完成签到,获得积分20
28秒前
Bu完成签到,获得积分10
30秒前
领导范儿应助WH采纳,获得10
30秒前
XIN完成签到 ,获得积分10
31秒前
禾薇完成签到 ,获得积分10
31秒前
王敏娜完成签到 ,获得积分10
33秒前
深情安青应助chengshaoyan采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577961
求助须知:如何正确求助?哪些是违规求助? 3997059
关于积分的说明 12374252
捐赠科研通 3671085
什么是DOI,文献DOI怎么找? 2023246
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176