Collaborative filtering recommendations based on multi-factor random walks

协同过滤 计算机科学 随机游动 推荐系统 相似性(几何) 偏爱 滤波器(信号处理) 数据挖掘 可信赖性 随机森林 因子(编程语言) 人工智能 机器学习 情报检索 统计 数学 计算机视觉 图像(数学) 计算机安全 程序设计语言
作者
Liangmin Guo,Kaixuan Luan,Li Sun,Yonglong Luo,Xiaoyao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106409-106409 被引量:4
标识
DOI:10.1016/j.engappai.2023.106409
摘要

Using trust relationships can improve the accuracy of recommendation systems; however, it is affected by data sparsity. Random walks can harvest the behavioral relationships between users and compensate for data sparsity. However, existing random walk methods may generate information of little value or even interference, which affects recommendation accuracy. A collaborative filter recommendation based on multi-factor random walk was proposed to address these problems. In this method, the comprehensive trust values of the current user over other users based on the rating time, user attribute preference, and number of mutual friends were computed more accurately to determine the trust neighborhood of the current user. Thus, trustworthy users with preferences similar to those of the current user were accurately and conveniently obtained to act as neighboring users, and the sparsity of the trust relationship could be alleviated. The final predicted rating of the target item was obtained using the ratings of multiple neighboring users for the target item or similar items to improve recommendation accuracy. Moreover, to avoid generating ratings that affect the prediction accuracy during the walk, a decision to stop the walk was made based on the comprehensive trust value, item similarity, and depth of the current walk, further improving the recommendation accuracy. An evaluation was performed on two datasets, and the proposed method achieved superior prediction accuracy and coverage rate even with sparse data and exhibited a high recommendation accuracy even with cold-start users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助nini采纳,获得10
1秒前
wkjfh应助朴实飞松采纳,获得50
3秒前
丘比特应助hymmloveGD采纳,获得10
7秒前
Drwang完成签到,获得积分10
7秒前
科研通AI6应助渴望者采纳,获得10
7秒前
nanan完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
可耐的从安完成签到 ,获得积分10
8秒前
天天快乐应助handan采纳,获得30
8秒前
JamesPei应助樊珩采纳,获得10
9秒前
9秒前
FashionBoy应助Jackson_Cai采纳,获得10
11秒前
领导范儿应助zhaosh采纳,获得10
11秒前
11秒前
浮游应助成就山菡采纳,获得10
11秒前
12秒前
大胆峻熙完成签到,获得积分20
13秒前
yyuu发布了新的文献求助10
14秒前
JJ发布了新的文献求助30
16秒前
16秒前
Kirin完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
hahaer完成签到,获得积分10
17秒前
17秒前
万能图书馆应助樊珩采纳,获得10
18秒前
lyon完成签到,获得积分10
19秒前
幽默鱼完成签到,获得积分10
19秒前
nini发布了新的文献求助10
19秒前
SciGPT应助hahaer采纳,获得10
21秒前
21秒前
22秒前
虚幻采枫发布了新的文献求助10
23秒前
23秒前
夏天的风完成签到,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282