Collaborative filtering recommendations based on multi-factor random walks

协同过滤 计算机科学 随机游动 推荐系统 相似性(几何) 偏爱 滤波器(信号处理) 数据挖掘 可信赖性 随机森林 因子(编程语言) 人工智能 机器学习 情报检索 统计 数学 计算机视觉 图像(数学) 计算机安全 程序设计语言
作者
Liangmin Guo,Kaixuan Luan,Li Sun,Yonglong Luo,Xiaoyao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106409-106409 被引量:4
标识
DOI:10.1016/j.engappai.2023.106409
摘要

Using trust relationships can improve the accuracy of recommendation systems; however, it is affected by data sparsity. Random walks can harvest the behavioral relationships between users and compensate for data sparsity. However, existing random walk methods may generate information of little value or even interference, which affects recommendation accuracy. A collaborative filter recommendation based on multi-factor random walk was proposed to address these problems. In this method, the comprehensive trust values of the current user over other users based on the rating time, user attribute preference, and number of mutual friends were computed more accurately to determine the trust neighborhood of the current user. Thus, trustworthy users with preferences similar to those of the current user were accurately and conveniently obtained to act as neighboring users, and the sparsity of the trust relationship could be alleviated. The final predicted rating of the target item was obtained using the ratings of multiple neighboring users for the target item or similar items to improve recommendation accuracy. Moreover, to avoid generating ratings that affect the prediction accuracy during the walk, a decision to stop the walk was made based on the comprehensive trust value, item similarity, and depth of the current walk, further improving the recommendation accuracy. An evaluation was performed on two datasets, and the proposed method achieved superior prediction accuracy and coverage rate even with sparse data and exhibited a high recommendation accuracy even with cold-start users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
斯文败类应助01采纳,获得10
1秒前
火山蜗牛完成签到,获得积分10
1秒前
彭于晏应助施宇宙采纳,获得10
2秒前
彭彦舟发布了新的文献求助10
2秒前
大模型应助kk采纳,获得10
3秒前
潮哈哈耶发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
越红发布了新的文献求助10
4秒前
仲乔妹完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
10秒前
11秒前
Victor完成签到 ,获得积分10
11秒前
胡锦霞发布了新的文献求助30
12秒前
彭彦舟完成签到,获得积分20
12秒前
ranranran发布了新的文献求助10
12秒前
13秒前
4466完成签到,获得积分10
13秒前
miao发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
华仔应助黄黄采纳,获得10
14秒前
15秒前
积极迎丝关注了科研通微信公众号
15秒前
16秒前
小包包发布了新的文献求助10
16秒前
yunshui发布了新的文献求助10
16秒前
17秒前
外向新之完成签到,获得积分10
17秒前
17秒前
丘比特应助述说采纳,获得10
18秒前
ocean发布了新的文献求助10
19秒前
19秒前
01发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492