Collaborative filtering recommendations based on multi-factor random walks

协同过滤 计算机科学 随机游动 推荐系统 相似性(几何) 偏爱 滤波器(信号处理) 数据挖掘 可信赖性 随机森林 因子(编程语言) 人工智能 机器学习 情报检索 统计 数学 计算机视觉 图像(数学) 计算机安全 程序设计语言
作者
Liangmin Guo,Kaixuan Luan,Li Sun,Yonglong Luo,Xiaoyao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106409-106409 被引量:4
标识
DOI:10.1016/j.engappai.2023.106409
摘要

Using trust relationships can improve the accuracy of recommendation systems; however, it is affected by data sparsity. Random walks can harvest the behavioral relationships between users and compensate for data sparsity. However, existing random walk methods may generate information of little value or even interference, which affects recommendation accuracy. A collaborative filter recommendation based on multi-factor random walk was proposed to address these problems. In this method, the comprehensive trust values of the current user over other users based on the rating time, user attribute preference, and number of mutual friends were computed more accurately to determine the trust neighborhood of the current user. Thus, trustworthy users with preferences similar to those of the current user were accurately and conveniently obtained to act as neighboring users, and the sparsity of the trust relationship could be alleviated. The final predicted rating of the target item was obtained using the ratings of multiple neighboring users for the target item or similar items to improve recommendation accuracy. Moreover, to avoid generating ratings that affect the prediction accuracy during the walk, a decision to stop the walk was made based on the comprehensive trust value, item similarity, and depth of the current walk, further improving the recommendation accuracy. An evaluation was performed on two datasets, and the proposed method achieved superior prediction accuracy and coverage rate even with sparse data and exhibited a high recommendation accuracy even with cold-start users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助小瓶子采纳,获得10
1秒前
1秒前
我是老大应助老迟的新瑶采纳,获得10
2秒前
pure_LJc发布了新的文献求助10
2秒前
2秒前
ding应助woody采纳,获得200
3秒前
3秒前
1449445280发布了新的文献求助10
3秒前
4秒前
薛定谔的猫完成签到,获得积分20
4秒前
5秒前
干净依秋发布了新的文献求助10
5秒前
wise111发布了新的文献求助10
5秒前
今后应助bhkwxdxy采纳,获得10
5秒前
5秒前
SciGPT应助亚亚呀采纳,获得30
6秒前
今年花生去年红完成签到,获得积分20
6秒前
7秒前
华仔应助隔壁小孩采纳,获得30
7秒前
领导范儿应助追寻冬萱采纳,获得20
7秒前
Double发布了新的文献求助10
7秒前
7秒前
7秒前
狂野老黑完成签到,获得积分10
7秒前
8秒前
香蕉觅云应助暴躁的咖啡采纳,获得10
8秒前
8秒前
8秒前
9秒前
蓓蓓发布了新的文献求助10
9秒前
赘婿应助给好评采纳,获得10
9秒前
yhx发布了新的文献求助20
9秒前
9秒前
10秒前
zw发布了新的文献求助10
10秒前
情怀应助zzdd采纳,获得10
10秒前
Lig发布了新的文献求助10
10秒前
dyh发布了新的文献求助10
11秒前
成就半双发布了新的文献求助10
11秒前
脑洞疼应助干净依秋采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763