亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Collaborative filtering recommendations based on multi-factor random walks

协同过滤 计算机科学 随机游动 推荐系统 相似性(几何) 偏爱 滤波器(信号处理) 数据挖掘 可信赖性 随机森林 因子(编程语言) 人工智能 机器学习 情报检索 统计 数学 计算机视觉 计算机安全 图像(数学) 程序设计语言
作者
Liangmin Guo,Kaixuan Luan,Li Sun,Yonglong Luo,Xiaoyao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106409-106409 被引量:4
标识
DOI:10.1016/j.engappai.2023.106409
摘要

Using trust relationships can improve the accuracy of recommendation systems; however, it is affected by data sparsity. Random walks can harvest the behavioral relationships between users and compensate for data sparsity. However, existing random walk methods may generate information of little value or even interference, which affects recommendation accuracy. A collaborative filter recommendation based on multi-factor random walk was proposed to address these problems. In this method, the comprehensive trust values of the current user over other users based on the rating time, user attribute preference, and number of mutual friends were computed more accurately to determine the trust neighborhood of the current user. Thus, trustworthy users with preferences similar to those of the current user were accurately and conveniently obtained to act as neighboring users, and the sparsity of the trust relationship could be alleviated. The final predicted rating of the target item was obtained using the ratings of multiple neighboring users for the target item or similar items to improve recommendation accuracy. Moreover, to avoid generating ratings that affect the prediction accuracy during the walk, a decision to stop the walk was made based on the comprehensive trust value, item similarity, and depth of the current walk, further improving the recommendation accuracy. An evaluation was performed on two datasets, and the proposed method achieved superior prediction accuracy and coverage rate even with sparse data and exhibited a high recommendation accuracy even with cold-start users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助糊涂的清醒者采纳,获得10
22秒前
WWXWWX发布了新的文献求助10
26秒前
32秒前
36秒前
哈哈发布了新的文献求助20
1分钟前
Lxy发布了新的文献求助50
1分钟前
哈哈完成签到,获得积分10
1分钟前
君寻完成签到 ,获得积分10
2分钟前
研友_8y2G0L完成签到,获得积分20
2分钟前
Diligency完成签到 ,获得积分10
2分钟前
2分钟前
情怀应助糊涂的清醒者采纳,获得10
2分钟前
poki完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
SciGPT应助清雨采纳,获得10
3分钟前
3分钟前
清雨发布了新的文献求助10
3分钟前
3分钟前
bukeshuo发布了新的文献求助10
3分钟前
4分钟前
打打应助清雨采纳,获得10
4分钟前
4分钟前
WWXWWX发布了新的文献求助30
4分钟前
5分钟前
清雨发布了新的文献求助10
5分钟前
李健应助清雨采纳,获得10
5分钟前
Otter完成签到,获得积分10
5分钟前
陆林北完成签到,获得积分10
5分钟前
李健应助糊涂的清醒者采纳,获得10
6分钟前
6分钟前
6分钟前
林利芳完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
wuyuan9588完成签到 ,获得积分10
7分钟前
xiewuhua完成签到,获得积分10
7分钟前
7分钟前
April完成签到 ,获得积分10
8分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921864
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438