Do Sentence-Level Sentiment Interactions Matter? Sentiment Mixed Heterogeneous Network for Fake News Detection

计算机科学 情绪分析 判决 人工智能 自然语言处理 分类器(UML) 光学(聚焦) 代表(政治) 政治学 政治 光学 物理 法学
作者
Hao Zhang,Zonglin Li,Sannyuya Liu,Tao Huang,Zhouwei Ni,Zhang Jian,Zhihan Lv
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5090-5100 被引量:9
标识
DOI:10.1109/tcss.2023.3269090
摘要

With the proliferation of fake news, the spread of misleading information can easily cause social panic and group polarization. Many existing methods for detecting fake news rely on linguistic and semantic features extracted from the content of the news. Some existing approaches focus on sentiment analysis for fake news detection, but the sentiment changes and sentence-level emotional interactions in news classification are not fully analyzed. Fortunately, we observe that in long-form news, the change and mutual influence of sentiment between sentences are different. To extract the features of sentiment interaction between sentences in the article, we propose a graph attention network-based model that combines both sentiment and external knowledge comparison to meet the needs of fake news classification. We obtain the contextual sentiment representation and entity representation of the sentence through the heterogeneous network and the emotion interaction network and obtain the change of the sentiment vector through the emotion comparison network. We compare the entity vectors in the context with those corresponding knowledge base (KB)-based, combine them with the contextual semantic representation of the sentence, and finally input them into the classifier. In experiments, our model performs well in both single and multiclass classification, achieving the state-of-the-art accuracy on existing datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小zhu完成签到,获得积分10
1秒前
钟冠完成签到,获得积分10
3秒前
洪山老狗完成签到,获得积分10
5秒前
MOD发布了新的文献求助10
6秒前
脑洞疼应助xiaoxixiccccc采纳,获得10
6秒前
万能图书馆应助Umind采纳,获得10
6秒前
7秒前
Zhou完成签到,获得积分10
7秒前
7秒前
田様应助qiany采纳,获得10
8秒前
c程序语言发布了新的文献求助10
11秒前
冷傲手套完成签到,获得积分20
13秒前
14秒前
14秒前
幸运小狗发布了新的文献求助10
15秒前
chris chen完成签到,获得积分10
15秒前
旭旭完成签到 ,获得积分10
16秒前
钟冠发布了新的文献求助10
16秒前
hanchangcun发布了新的文献求助10
17秒前
奇奇怪怪完成签到 ,获得积分10
19秒前
20秒前
yt发布了新的文献求助10
21秒前
23秒前
宇心完成签到,获得积分10
23秒前
tennisgirl完成签到 ,获得积分10
24秒前
Bonnienuit发布了新的文献求助50
25秒前
bkagyin应助大气的月饼采纳,获得10
26秒前
shouz发布了新的文献求助10
26秒前
29秒前
31秒前
31秒前
31秒前
qiany发布了新的文献求助10
36秒前
36秒前
数学情缘发布了新的文献求助10
36秒前
37秒前
cxh发布了新的文献求助10
37秒前
38秒前
MOD完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870