Do Sentence-Level Sentiment Interactions Matter? Sentiment Mixed Heterogeneous Network for Fake News Detection

计算机科学 情绪分析 判决 人工智能 自然语言处理 分类器(UML) 光学(聚焦) 代表(政治) 物理 政治 法学 政治学 光学
作者
Hao Zhang,Zonglin Li,Sannyuya Liu,Tao Huang,Zhouwei Ni,Zhang Jian,Zhihan Lv
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5090-5100 被引量:9
标识
DOI:10.1109/tcss.2023.3269090
摘要

With the proliferation of fake news, the spread of misleading information can easily cause social panic and group polarization. Many existing methods for detecting fake news rely on linguistic and semantic features extracted from the content of the news. Some existing approaches focus on sentiment analysis for fake news detection, but the sentiment changes and sentence-level emotional interactions in news classification are not fully analyzed. Fortunately, we observe that in long-form news, the change and mutual influence of sentiment between sentences are different. To extract the features of sentiment interaction between sentences in the article, we propose a graph attention network-based model that combines both sentiment and external knowledge comparison to meet the needs of fake news classification. We obtain the contextual sentiment representation and entity representation of the sentence through the heterogeneous network and the emotion interaction network and obtain the change of the sentiment vector through the emotion comparison network. We compare the entity vectors in the context with those corresponding knowledge base (KB)-based, combine them with the contextual semantic representation of the sentence, and finally input them into the classifier. In experiments, our model performs well in both single and multiclass classification, achieving the state-of-the-art accuracy on existing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
sxhdxwf发布了新的文献求助30
1秒前
1秒前
勤奋的从梦完成签到,获得积分10
3秒前
4秒前
ukmy完成签到,获得积分10
4秒前
5秒前
lh发布了新的文献求助10
5秒前
公冶笑白完成签到,获得积分10
6秒前
ukmy发布了新的文献求助10
6秒前
7秒前
带志完成签到,获得积分10
8秒前
9秒前
Hello应助wuniuniu采纳,获得10
10秒前
顾众生发布了新的文献求助10
11秒前
鱼蛋发布了新的文献求助10
12秒前
坦率白萱应助liz_采纳,获得10
12秒前
Jasper应助lh采纳,获得10
12秒前
所所应助ergou采纳,获得10
12秒前
Ploaris完成签到 ,获得积分10
12秒前
15秒前
孙燕应助PMoLGGYM2021采纳,获得10
15秒前
玄月发布了新的文献求助10
16秒前
QDU发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
20秒前
hyhyhyhy发布了新的文献求助10
22秒前
徐星军完成签到,获得积分10
22秒前
PANDA发布了新的文献求助10
24秒前
顺利的冬菱完成签到,获得积分10
25秒前
orixero应助hyhyhyhy采纳,获得10
26秒前
PANGDA发布了新的文献求助10
27秒前
QDU完成签到,获得积分10
28秒前
29秒前
潜水读者发布了新的文献求助10
29秒前
安静的寒风完成签到,获得积分10
30秒前
华仔应助草上飞采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176