Employment of relaxation times distribution with improved elastic net regularization for advanced impedance data analysis of a lithium-ion battery

电阻抗 正规化(语言学) 阻抗参数 计算机科学 介电谱 等效电路 锂离子电池 极化(电化学) 生物系统 算法 电子工程 材料科学 电池(电) 化学 电压 电化学 电气工程 电极 工程类 物理 人工智能 热力学 物理化学 功率(物理) 生物
作者
Roland Kobla Tagayi,Salah Eddine Ezahedi,Jaeyeong Kim,Jonghoon Kim
出处
期刊:Journal of energy storage [Elsevier]
卷期号:70: 107970-107970 被引量:7
标识
DOI:10.1016/j.est.2023.107970
摘要

Electrochemical impedance spectroscopy (EIS) is a familiar conventional approach that has been widely applied to analyze electrochemical systems, such as batteries and fuel cells, to determine the polarization resistances of their electrodes. An improved method that can effectively interpret EIS spectra with high resolution and provide close knowledge of the time features of the electrochemical system being considered is the distribution of relaxation times (DRT). However, estimating and attaining DRT is a challenging issue that involves solutions being obtained by employing regularization techniques. This study proposed an improved elastic net (IEN) regularization with an adaptive elastic net penalty, wherein adaptive weight matrices were incorporated into the elastic net penalty. The proposed technique was first validated on standard artificial experimental elements: RC circuit, fractal-RC (FRC) circuit, ZARC element, and Gerischer element, each with a known analytical DRT. The results showed that the proposed method exhibited better estimation accuracy in obtaining the exact known DRTs and resistances, and lower mean square errors (MSEs) when compared with the conventional elastic net (EN) regularization method. Furthermore, the proposed method was applied to the EIS data of real lithium-ion batteries with different state-of-charge (SOC) and temperatures, where the obtained DRTs provided an intuitive analysis of the processes within the battery. The proposed model can accurately estimate various time characterizations and identify their processes. Besides the DRTtool results are correspondingly similar to this study's results showing the effectiveness of the proposed approach when compared. However, the limitations and weaknesses of the proposed approach were recognized and reported in this study. Moreover, the proposed approach can be further extended, improved, and employed for advanced EIS techniques and multidimensional EIS data analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Eternity采纳,获得10
1秒前
1秒前
传奇3应助辜越涛采纳,获得10
1秒前
puyu发布了新的文献求助10
1秒前
Alicia发布了新的文献求助10
1秒前
海带完成签到,获得积分10
2秒前
祝yu完成签到 ,获得积分10
2秒前
2秒前
试遣愚忠发布了新的文献求助10
2秒前
Morgenstern_ZH完成签到,获得积分10
2秒前
gyh完成签到,获得积分10
3秒前
3秒前
biofresh完成签到,获得积分10
3秒前
小明完成签到,获得积分10
3秒前
科研一坤年给科研一坤年的求助进行了留言
3秒前
姜鸽发布了新的文献求助10
3秒前
3秒前
4秒前
舒适的海雪关注了科研通微信公众号
4秒前
4秒前
Fung完成签到,获得积分10
4秒前
陈末应助zhq采纳,获得10
4秒前
SCI发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
车窗外完成签到,获得积分10
5秒前
huhuhuuh完成签到,获得积分10
5秒前
6秒前
雪花飘飘完成签到,获得积分10
6秒前
kong完成签到,获得积分10
6秒前
wen发布了新的文献求助10
7秒前
7秒前
栗子完成签到,获得积分10
7秒前
Alicia完成签到,获得积分10
7秒前
太叔笑萍完成签到,获得积分10
8秒前
语物完成签到,获得积分10
8秒前
Jian完成签到 ,获得积分10
8秒前
wen完成签到,获得积分10
8秒前
陈末应助gqb采纳,获得10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427891
求助须知:如何正确求助?哪些是违规求助? 4541819
关于积分的说明 14178455
捐赠科研通 4459383
什么是DOI,文献DOI怎么找? 2445345
邀请新用户注册赠送积分活动 1436513
关于科研通互助平台的介绍 1413844