A data-driven model for water quality prediction in Tai Lake, China, using secondary modal decomposition with multidimensional external features

超参数 水资源 水质 情态动词 计算机科学 环境科学 分解 卷积神经网络 预测建模 特征(语言学) 数据挖掘 人工智能 机器学习 生态学 哲学 生物 化学 高分子化学 语言学
作者
Rui Tan,Zhaocai Wang,Tunhua Wu,Junhao Wu
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier]
卷期号:47: 101435-101435 被引量:2
标识
DOI:10.1016/j.ejrh.2023.101435
摘要

Tai Lake, the third largest freshwater lake in China, with a history of serious ecological pollution incidents. Lake water quality prediction techniques are essential to ensure an early emergency response capability for sustainable water management. Herein, an effective data-driven ensemble model was developed for predicting lake dissolved oxygen (DO) based on meteorological factors, water quality indicators and spatial information. First, variation mode decomposition (VMD) was used to decompose data into multiple modal components and classify them into feature terms and self terms. The feature terms were combined with relevant external features for multivariate prediction by convolutional neural network (CNN) and a bi-directional long and short-term memory (BiLSTM) with attention mechanism (AT), as well as using the whale optimization algorithm (WOA) to optimize the model hyperparameters. The self terms form a secondary modal decomposition model. Finally, the groupings were linearly summed to obtain outcome. The proposed model has the highest prediction accuracy in Tai Lake as well as the best prediction effect using 0.5 days as the period. This research also establishes a stepwise water temperature regulation mechanism, where the output of the target DO content value is achieved by changing the magnitude of water temperature and combining it with this prediction model, thereby strengthening the protection of water resources and the management of fishery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm发布了新的文献求助30
刚刚
刚刚
大个应助qikuo采纳,获得10
1秒前
1秒前
思源应助鲁静萱采纳,获得10
2秒前
机灵魂幽完成签到,获得积分10
2秒前
罗鑫玺完成签到,获得积分10
2秒前
烟花应助胖大鱼采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
orixero应助开心的西瓜采纳,获得10
3秒前
Lucas应助吕建安采纳,获得10
3秒前
4秒前
FashionBoy应助诉与山风听采纳,获得10
5秒前
常丽芳发布了新的文献求助10
5秒前
5秒前
Envy完成签到 ,获得积分10
5秒前
5秒前
5秒前
tianqiang完成签到,获得积分10
5秒前
6秒前
6秒前
babylow完成签到,获得积分10
6秒前
平平宁发布了新的文献求助10
6秒前
6秒前
JamesPei应助黄龙采纳,获得10
7秒前
Sonder发布了新的文献求助10
7秒前
7秒前
木子发布了新的文献求助10
7秒前
shuaideyapi完成签到,获得积分10
7秒前
肖志勇发布了新的文献求助10
8秒前
盏盏应助tianqiang采纳,获得10
9秒前
9秒前
Orange应助包容的善斓采纳,获得10
10秒前
聪慧代芹完成签到,获得积分20
10秒前
if发布了新的文献求助10
10秒前
朴西西发布了新的文献求助10
10秒前
Cheng完成签到 ,获得积分10
11秒前
Hanluchen完成签到,获得积分10
11秒前
科研通AI6应助灵儿采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914