A data-driven model for water quality prediction in Tai Lake, China, using secondary modal decomposition with multidimensional external features

超参数 水资源 水质 情态动词 计算机科学 环境科学 分解 卷积神经网络 预测建模 特征(语言学) 数据挖掘 人工智能 机器学习 生态学 哲学 生物 化学 高分子化学 语言学
作者
Rui Tan,Zhaocai Wang,Tunhua Wu,Junhao Wu
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier]
卷期号:47: 101435-101435 被引量:2
标识
DOI:10.1016/j.ejrh.2023.101435
摘要

Tai Lake, the third largest freshwater lake in China, with a history of serious ecological pollution incidents. Lake water quality prediction techniques are essential to ensure an early emergency response capability for sustainable water management. Herein, an effective data-driven ensemble model was developed for predicting lake dissolved oxygen (DO) based on meteorological factors, water quality indicators and spatial information. First, variation mode decomposition (VMD) was used to decompose data into multiple modal components and classify them into feature terms and self terms. The feature terms were combined with relevant external features for multivariate prediction by convolutional neural network (CNN) and a bi-directional long and short-term memory (BiLSTM) with attention mechanism (AT), as well as using the whale optimization algorithm (WOA) to optimize the model hyperparameters. The self terms form a secondary modal decomposition model. Finally, the groupings were linearly summed to obtain outcome. The proposed model has the highest prediction accuracy in Tai Lake as well as the best prediction effect using 0.5 days as the period. This research also establishes a stepwise water temperature regulation mechanism, where the output of the target DO content value is achieved by changing the magnitude of water temperature and combining it with this prediction model, thereby strengthening the protection of water resources and the management of fishery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静破茧完成签到,获得积分20
刚刚
刚刚
jevon应助黎明采纳,获得10
1秒前
xiaogang127发布了新的文献求助10
1秒前
必发文章发布了新的文献求助10
2秒前
3秒前
留猪完成签到,获得积分10
3秒前
大兵完成签到,获得积分10
3秒前
明明完成签到,获得积分20
3秒前
n5421完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
buno应助吹气球的金毛采纳,获得10
6秒前
Meteor发布了新的文献求助10
7秒前
Cwx2020完成签到,获得积分10
8秒前
大兵发布了新的文献求助10
8秒前
罗罗诺亚完成签到,获得积分10
14秒前
小蘑菇应助书生采纳,获得10
14秒前
论文急急令完成签到,获得积分10
14秒前
Charail发布了新的文献求助30
16秒前
16秒前
17秒前
飞快的鸵鸟完成签到,获得积分20
18秒前
18秒前
18秒前
jiyang完成签到,获得积分10
18秒前
必发文章完成签到,获得积分20
19秒前
19秒前
清脆的以松完成签到 ,获得积分10
20秒前
Meteor完成签到,获得积分10
21秒前
今后应助wowser采纳,获得10
21秒前
有为发布了新的文献求助10
21秒前
科研通AI2S应助gy采纳,获得10
22秒前
22秒前
Fafa_完成签到,获得积分10
22秒前
24秒前
善学以致用应助马迦南采纳,获得10
25秒前
清脆的以松关注了科研通微信公众号
26秒前
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248