A data-driven model for water quality prediction in Tai Lake, China, using secondary modal decomposition with multidimensional external features

超参数 水资源 水质 情态动词 计算机科学 环境科学 分解 卷积神经网络 预测建模 特征(语言学) 数据挖掘 人工智能 机器学习 生态学 哲学 生物 化学 高分子化学 语言学
作者
Rui Tan,Zhaocai Wang,Tunhua Wu,Junhao Wu
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier BV]
卷期号:47: 101435-101435 被引量:2
标识
DOI:10.1016/j.ejrh.2023.101435
摘要

Tai Lake, the third largest freshwater lake in China, with a history of serious ecological pollution incidents. Lake water quality prediction techniques are essential to ensure an early emergency response capability for sustainable water management. Herein, an effective data-driven ensemble model was developed for predicting lake dissolved oxygen (DO) based on meteorological factors, water quality indicators and spatial information. First, variation mode decomposition (VMD) was used to decompose data into multiple modal components and classify them into feature terms and self terms. The feature terms were combined with relevant external features for multivariate prediction by convolutional neural network (CNN) and a bi-directional long and short-term memory (BiLSTM) with attention mechanism (AT), as well as using the whale optimization algorithm (WOA) to optimize the model hyperparameters. The self terms form a secondary modal decomposition model. Finally, the groupings were linearly summed to obtain outcome. The proposed model has the highest prediction accuracy in Tai Lake as well as the best prediction effect using 0.5 days as the period. This research also establishes a stepwise water temperature regulation mechanism, where the output of the target DO content value is achieved by changing the magnitude of water temperature and combining it with this prediction model, thereby strengthening the protection of water resources and the management of fishery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骑着火车撵火箭完成签到,获得积分10
刚刚
zjh完成签到,获得积分10
刚刚
小璐璐呀完成签到,获得积分10
1秒前
春夏秋冬发布了新的文献求助10
1秒前
静静完成签到,获得积分10
1秒前
Dreamchaser完成签到,获得积分20
1秒前
1秒前
苹果完成签到,获得积分10
2秒前
学呀学完成签到 ,获得积分10
2秒前
Efficient完成签到 ,获得积分10
2秒前
称心采枫完成签到 ,获得积分0
2秒前
jichups完成签到,获得积分10
3秒前
桀桀桀完成签到,获得积分10
4秒前
4秒前
无线网发布了新的文献求助10
4秒前
幽默鱼完成签到,获得积分10
5秒前
淡定的太清完成签到,获得积分10
5秒前
RayLam完成签到,获得积分10
5秒前
库库写论文完成签到,获得积分10
5秒前
田様应助一只东北鸟采纳,获得10
6秒前
在水一方应助从容谷菱采纳,获得10
6秒前
6秒前
罗静完成签到,获得积分10
6秒前
勤恳的德地完成签到,获得积分10
6秒前
大力完成签到 ,获得积分10
7秒前
科研通AI5应助wikkk采纳,获得10
7秒前
傲娇的蛋挞完成签到,获得积分20
7秒前
张美美完成签到,获得积分10
7秒前
打打应助浊轶采纳,获得10
8秒前
haonanchen完成签到,获得积分10
8秒前
坚强似狮完成签到,获得积分10
8秒前
我要发文章完成签到 ,获得积分10
9秒前
司妧完成签到,获得积分10
9秒前
廖琪发布了新的文献求助10
9秒前
可爱的函函应助apt采纳,获得10
9秒前
ellen完成签到,获得积分10
9秒前
猕猴桃完成签到,获得积分10
10秒前
10秒前
10秒前
CQ完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077