氨硼烷
催化作用
材料科学
纳米颗粒
镍
兴奋剂
氨
可见光谱
磷
硼烷
铂金
金属
铂纳米粒子
水解
无机化学
纳米技术
化学
有机化学
冶金
氢气储存
合金
光电子学
作者
Chao Wan,Li Gui,Jiapei Wang,Lixin Xu,Dang‐guo Cheng,Fengqiu Chen,Yusuke Asakura,Yunqing Kang,Yusuke Yamauchi
标识
DOI:10.1002/anie.202305371
摘要
Abstract Ammonia borane (AB) is a promising material for chemical H 2 storage owing to its high H 2 density (up to 19.6 wt %). However, the development of an efficient catalyst for driving H 2 evolution through AB hydrolysis remains challenging. Therefore, a visible‐light‐driven strategy for generating H 2 through AB hydrolysis was implemented in this study using Ni−Pt nanoparticles supported on phosphorus‐doped TiO 2 (Ni‐Pt/P‐TiO 2 ) as photocatalysts. Through surface engineering, P‐TiO 2 was prepared by phytic‐acid‐assisted phosphorization and then employed as an ideal support for immobilizing Ni−Pt nanoparticles via a facile co‐reduction strategy. Under visible‐light irradiation at 283 K, Ni 40 Pt 60 /P‐TiO 2 exhibited improved recyclability and a high turnover frequency of 967.8 mol mol Pt −1 min −1 . Characterization experiments and density functional theory calculations indicated that the enhanced performance of Ni 40 Pt 60 /P‐TiO 2 originated from a combination of the Ni−Pt alloying effect, the Mott–Schottky junction at the metal‐semiconductor interface, and strong metal‐support interactions. These findings not only underscore the benefits of utilizing multipronged effects to construct highly active AB‐hydrolyzing catalysts, but also pave a path toward designing high‐performance catalysts by surface engineering to modulate the electronic metal‐support interactions for other visible‐light‐induced reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI