氨硼烷
催化作用
镍
材料科学
纳米颗粒
氨
兴奋剂
磷
可见光谱
硼烷
铂金
金属
水解
无机化学
纳米技术
化学
有机化学
冶金
制氢
光电子学
作者
Chao Wan,Li Gui,Jiapei Wang,Lixin Xu,Dang‐guo Cheng,Fengqiu Chen,Yusuke Asakura,Yunqing Kang,Yusuke Yamauchi
标识
DOI:10.1002/anie.202305371
摘要
Ammonia borane (AB) is a promising material for chemical H2 storage owing to its high H2 density (up to 19.6 wt %). However, the development of an efficient catalyst for driving H2 evolution through AB hydrolysis remains challenging. Therefore, a visible-light-driven strategy for generating H2 through AB hydrolysis was implemented in this study using Ni-Pt nanoparticles supported on phosphorus-doped TiO2 (Ni-Pt/P-TiO2 ) as photocatalysts. Through surface engineering, P-TiO2 was prepared by phytic-acid-assisted phosphorization and then employed as an ideal support for immobilizing Ni-Pt nanoparticles via a facile co-reduction strategy. Under visible-light irradiation at 283 K, Ni40 Pt60 /P-TiO2 exhibited improved recyclability and a high turnover frequency of 967.8 mol H2${{_{{\rm H}{_{2}}}}}$ molPt-1 min-1 . Characterization experiments and density functional theory calculations indicated that the enhanced performance of Ni40 Pt60 /P-TiO2 originated from a combination of the Ni-Pt alloying effect, the Mott-Schottky junction at the metal-semiconductor interface, and strong metal-support interactions. These findings not only underscore the benefits of utilizing multipronged effects to construct highly active AB-hydrolyzing catalysts, but also pave a path toward designing high-performance catalysts by surface engineering to modulate the electronic metal-support interactions for other visible-light-induced reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI