An efficient intrusion detection method using federated transfer learning and support vector machine with privacy-preserving

计算机科学 入侵检测系统 支持向量机 机器学习 前提 人工智能 学习迁移 数据挖掘 钥匙(锁) 网络安全 数据共享 信息隐私 计算机安全 医学 哲学 语言学 替代医学 病理
作者
Weifei Wu,Yanhui Zhang
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:27 (4): 1121-1141 被引量:4
标识
DOI:10.3233/ida-226617
摘要

In recent decades, network security for organizations and individuals has become more and more important, and intrusion detection systems play a key role in protecting network security. To improve intrusion detection effect, different machine learning techniques have been widely applied and achieved exciting results. However, the premise that these methods achieve reliable results is that there are enough available and well-labeled training data, training and test data being from the same distribution. In real life, the limited label data generated by a single organization is not enough to train a reliable learning model, and the distribution of data collected by different organizations is difficult to be the same. In addition, various organizations protect their privacy and data security through data islands. Therefore, this paper proposes an efficient intrusion detection method using transfer learning and support vector machine with privacy-preserving (FETLSVMP). FETLSVMP performs aggregation of data distributed in various organizations through federated learning, then utilizes transfer learning and support vector machines build personalized models for each organization. Specifically, FETLSVMP first builds a transfer support vector machine model to solve the problem of data distribution differences among various organizations; then, under the mechanism of federated learning, the model is used for learning without sharing training data on each organization to protect data privacy; finally, the intrusion detection model is obtained with protecting the privacy of data. Experiments are carried out on NSL-KDD, KDD CUP99 and ISCX2012, the experimental results verify that the proposed method can achieve better results of detection and robust performance, especially for small samples and emerging intrusion behaviors, and have the ability to protect data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
悠悠发布了新的文献求助20
1秒前
2秒前
路漫漫发布了新的文献求助10
2秒前
醋溜爆肚儿应助zg采纳,获得10
3秒前
情怀应助sulh采纳,获得10
3秒前
4秒前
Nitric_Oxide发布了新的文献求助40
4秒前
ff完成签到,获得积分10
4秒前
思源应助PPRer采纳,获得10
5秒前
小广发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助无情飞风采纳,获得10
8秒前
洪山老狗完成签到,获得积分10
8秒前
huang完成签到,获得积分10
8秒前
Stefan应助留胡子的山灵采纳,获得50
8秒前
阿猩a完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
斯文败类应助咩咩采纳,获得10
10秒前
Vincy完成签到 ,获得积分10
10秒前
安静元槐发布了新的文献求助10
10秒前
暴躁的冰兰完成签到,获得积分10
10秒前
沾沾发布了新的文献求助10
10秒前
11秒前
靳静发布了新的文献求助10
12秒前
zzyytt完成签到,获得积分10
13秒前
13秒前
口布鲁发布了新的文献求助10
13秒前
13秒前
科目三应助weiwei采纳,获得10
13秒前
cc发布了新的文献求助10
14秒前
vision应助路漫漫采纳,获得10
14秒前
大菠萝发布了新的文献求助10
15秒前
得鹿梦鱼完成签到,获得积分10
16秒前
18秒前
18秒前
摆烂发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352