An efficient intrusion detection method using federated transfer learning and support vector machine with privacy-preserving

计算机科学 入侵检测系统 支持向量机 机器学习 前提 人工智能 学习迁移 数据挖掘 钥匙(锁) 网络安全 数据共享 信息隐私 计算机安全 哲学 病理 医学 语言学 替代医学
作者
Weifei Wu,Yanhui Zhang
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:27 (4): 1121-1141 被引量:4
标识
DOI:10.3233/ida-226617
摘要

In recent decades, network security for organizations and individuals has become more and more important, and intrusion detection systems play a key role in protecting network security. To improve intrusion detection effect, different machine learning techniques have been widely applied and achieved exciting results. However, the premise that these methods achieve reliable results is that there are enough available and well-labeled training data, training and test data being from the same distribution. In real life, the limited label data generated by a single organization is not enough to train a reliable learning model, and the distribution of data collected by different organizations is difficult to be the same. In addition, various organizations protect their privacy and data security through data islands. Therefore, this paper proposes an efficient intrusion detection method using transfer learning and support vector machine with privacy-preserving (FETLSVMP). FETLSVMP performs aggregation of data distributed in various organizations through federated learning, then utilizes transfer learning and support vector machines build personalized models for each organization. Specifically, FETLSVMP first builds a transfer support vector machine model to solve the problem of data distribution differences among various organizations; then, under the mechanism of federated learning, the model is used for learning without sharing training data on each organization to protect data privacy; finally, the intrusion detection model is obtained with protecting the privacy of data. Experiments are carried out on NSL-KDD, KDD CUP99 and ISCX2012, the experimental results verify that the proposed method can achieve better results of detection and robust performance, especially for small samples and emerging intrusion behaviors, and have the ability to protect data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寇寇完成签到 ,获得积分10
刚刚
bigfish发布了新的文献求助10
1秒前
caozhi发布了新的文献求助10
1秒前
随机完成签到,获得积分10
1秒前
phoebe发布了新的文献求助10
2秒前
霜降完成签到,获得积分10
2秒前
醉熏的伊完成签到,获得积分10
3秒前
5秒前
陆仓颉完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
小男孩完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
冷傲迎梦发布了新的文献求助10
8秒前
zz完成签到,获得积分10
8秒前
8秒前
哈哈悦完成签到,获得积分10
8秒前
孔问筠完成签到,获得积分10
9秒前
小马哥完成签到,获得积分10
9秒前
贪玩的万仇完成签到,获得积分10
9秒前
LuciusHe完成签到,获得积分10
9秒前
可爱的函函应助phoebe采纳,获得10
9秒前
王豆豆发布了新的文献求助10
9秒前
郁乾完成签到,获得积分10
10秒前
斯文的秋白完成签到,获得积分10
10秒前
200410cl发布了新的文献求助10
12秒前
悦耳觅夏完成签到 ,获得积分10
12秒前
蔬菜人完成签到,获得积分10
12秒前
沐沐心完成签到 ,获得积分10
12秒前
前蹄儿完成签到,获得积分10
12秒前
番茄炒西红柿完成签到,获得积分10
12秒前
Senna发布了新的文献求助10
12秒前
忧郁衬衫完成签到 ,获得积分10
13秒前
学术rookie完成签到,获得积分10
13秒前
西野完成签到,获得积分10
13秒前
13秒前
天边发布了新的文献求助10
13秒前
一只大憨憨猫完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953576
求助须知:如何正确求助?哪些是违规求助? 3499159
关于积分的说明 11094348
捐赠科研通 3229748
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478