Detecting abandoned citrus crops using Sentinel-2 time series. A case study in the Comunitat Valenciana region (Spain)

地理 地图学 放弃(法律) 农用地 自然地理学 林业 农业 遥感 考古 政治学 法学
作者
Sergio Morell-Monzó,María-Teresa Sebastiá-Frasquet,Javier Estornell,Enrique Moltó
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 54-66 被引量:2
标识
DOI:10.1016/j.isprsjprs.2023.05.003
摘要

Agricultural land abandonment (ALA) is becoming a growing phenomenon around the world that needs to be monitored and quantified. A massive abandonment of citrus orchards has been experienced in the last years in the Comunitat Valenciana (CV) region (Spain) driven by different socio-economic factors. Therefore, developing time and cost-efficient methods for monitoring ALA is a priority. Citrus are a perennial crop trees which make orchards have low spectral variation during the year. In the CV region, they are planted in relatively small parcels, thus creating a highly fragmented and heterogeneous landscape. This study proposes a machine learning-based classification framework that uses annual time series of spectral indices extracted from Sentinel-2 images to identify crop status at parcel level. The method is based on features extracted from the reconstructed OSAVI and NDMI time series used to train a Random Forest classifier. Then, a parcel-based classification is performed using the parcel boundaries and the probabilities of belonging to each category for the full pixels inside the boundaries. The research assessed the potential to identify three statuses of crops (non-productive, productive, and abandoned). Results on three different temporal and spatial datasets provided an overall accuracy ranging from 89 to 92 %, demonstrating the importance of multi-temporal data to identify the abandonment of perennial crops. Furthermore, we studied the ability of the model to be spatially and temporally transferred. Limitations to recall the abandoned parcels when using models trained in other areas or time periods are exposed, opening the way to model improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小酸奶完成签到,获得积分10
刚刚
4秒前
卡戎529发布了新的文献求助10
5秒前
汉堡包应助mm采纳,获得10
6秒前
善良的书本应助夜倾心采纳,获得30
8秒前
高贵的惜霜完成签到,获得积分20
9秒前
狂野果汁发布了新的文献求助10
10秒前
chen完成签到,获得积分10
11秒前
11秒前
刘钱美子完成签到,获得积分10
11秒前
12秒前
香蕉梨愁完成签到,获得积分10
13秒前
爱静静应助高贵的惜霜采纳,获得10
14秒前
深情安青应助涂山路采纳,获得10
16秒前
18秒前
wenxiang发布了新的文献求助10
18秒前
18秒前
北木黎发布了新的文献求助10
18秒前
可爱的函函应助Vincent采纳,获得10
20秒前
mm发布了新的文献求助10
22秒前
haozi王完成签到,获得积分10
24秒前
33秒前
含蓄的依瑶完成签到 ,获得积分10
33秒前
今后应助科研通管家采纳,获得30
33秒前
脑洞疼应助科研通管家采纳,获得30
33秒前
无花果应助科研通管家采纳,获得10
33秒前
33秒前
我是老大应助科研通管家采纳,获得10
33秒前
33秒前
CipherSage应助轩轩轩采纳,获得10
35秒前
涂山路发布了新的文献求助10
38秒前
宇是眼中星眸完成签到 ,获得积分10
38秒前
xianglily完成签到 ,获得积分10
39秒前
Ammy完成签到,获得积分10
40秒前
莫离发布了新的文献求助10
41秒前
42秒前
43秒前
wanci应助狂野果汁采纳,获得10
45秒前
英姑应助Tomato采纳,获得30
47秒前
万能图书馆应助刘星星采纳,获得10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079