海水
电催化剂
分解水
联氨(抗抑郁剂)
金属有机骨架
材料科学
电解质
阳极
电解
催化作用
金属
无机化学
电解水
化学工程
氢
纳米技术
电化学
化学
电极
冶金
物理化学
有机化学
海洋学
光催化
色谱法
吸附
工程类
地质学
作者
Xuefei Xu,Hsiao‐Chien Chen,Linfeng Li,Muhammad Humayun,Xia Zhang,Huachuan Sun,Damien P. Debecker,Wenjun Zhang,Liming Dai,Chundong Wang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-06-01
卷期号:17 (11): 10906-10917
被引量:55
标识
DOI:10.1021/acsnano.3c02749
摘要
Metal-organic frameworks (MOFs) show great promise for electrocatalysis owing to their tunable ligand structures. However, the poor stability of MOFs impedes their practical applications. Unlike the general pathway for engineering ligands, we report herein an innovative strategy for leveraging metal nodes to improve both the catalytic activity and the stability. Our electrolysis cell with a NiRh-MOF||NiRh-MOF configuration exhibited 10 mA cm-2 at an ultralow cell voltage of 0.06 V in alkaline seawater (with 0.3 M N2H4), outperforming its counterpart benchmark Pt/C||Pt/C cell (0.12 V). Impressively, the incorporation of Rh into a MOF secured a robust stability of over 60 h even when working in the seawater electrolyte. Experimental results and theoretical calculations revealed that Rh atoms serve as the active sites for hydrogen evolution while Ni nodes are responsible for the hydrazine oxidation during the hydrazine oxidation assisted seawater splitting. This work provides a paradigm for green hydrogen generation from seawater.
科研通智能强力驱动
Strongly Powered by AbleSci AI