Preferred vector machine for forest fire detection

可解释性 计算机科学 人工智能 规范(哲学) 字错误率 机器学习 核化 核希尔伯特再生空间 支持向量机 模式识别(心理学) 希尔伯特空间 算法 数学 参数化复杂度 数学分析 政治学 法学
作者
Xubing Yang,Zhichun Hua,Li Zhang,Xijian Fan,Fuquan Zhang,Qiaolin Ye,Liyong Fu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109722-109722 被引量:30
标识
DOI:10.1016/j.patcog.2023.109722
摘要

Machine learning-based fire detection/recognition is very popular in forest-monitoring systems. However, without considering the prior knowledge, e.g., equal attention on both classes of the fire and non-fire samples, fire miss-detected phenomena frequently appeared in the current methods. In this work, considering model’s interpretability and the limited data for model-training, we propose a novel pixel-precision method, termed as PreVM (Preferred Vector Machine). To guarantee high fire detection rate under precise control, a new L0 norm constraint is introduced to the fire class. Computationally, instead of the traditional L1 re-weighted techniques in L0 norm approximation, this L0 constraint can be converted into linear inequality and incorporated into the process of parameter selection. To further speed up model-training and reduce error warning rate, we also present a kernel-based L1 norm PreVM (L1-PreVM). Theoretically, we firstly prove the existence of dual representation for the general Lp (p≥1) norm regularization problems in RKHS (Reproducing Kernel Hilbert Space). Then, we provide a mathematical evidence for L1 norm kernelization to conquer the case when feature samples do not appear in pairs. The work also includes an extensive experimentation on the real forest fire images and videos. Compared with the-state-of-art methods, the results show that our PreVM is capable of simultaneously achieving higher fire detection rates and lower error warning rates, and L1-PreVM is also superior in real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花花发布了新的文献求助20
1秒前
asd113发布了新的文献求助10
5秒前
美满的小蘑菇完成签到 ,获得积分10
5秒前
自然白安完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
14秒前
等待小鸽子完成签到 ,获得积分10
16秒前
龙虾发票完成签到,获得积分10
23秒前
小康学弟完成签到 ,获得积分10
23秒前
了0完成签到 ,获得积分10
23秒前
慕青应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得30
26秒前
毛豆爸爸应助科研通管家采纳,获得20
26秒前
林利芳完成签到 ,获得积分0
27秒前
JaneChen完成签到 ,获得积分10
29秒前
健壮惋清完成签到 ,获得积分10
29秒前
30秒前
gabee完成签到 ,获得积分10
34秒前
liang19640908完成签到 ,获得积分10
37秒前
奋斗的雪曼完成签到 ,获得积分10
43秒前
粗心的飞槐完成签到 ,获得积分10
43秒前
LELE完成签到 ,获得积分10
50秒前
了0完成签到 ,获得积分10
51秒前
apocalypse完成签到 ,获得积分10
56秒前
guhao完成签到 ,获得积分10
57秒前
指导灰完成签到 ,获得积分10
57秒前
善良的火完成签到 ,获得积分10
1分钟前
优雅夕阳完成签到 ,获得积分10
1分钟前
Jasper应助光亮的自行车采纳,获得10
1分钟前
miki完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
KX2024完成签到,获得积分10
1分钟前
松松发布了新的文献求助20
1分钟前
nusiew完成签到,获得积分10
1分钟前
huiluowork完成签到 ,获得积分10
1分钟前
陶醉的翠霜完成签到 ,获得积分10
1分钟前
1分钟前
冷静如松完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022