Preferred vector machine for forest fire detection

可解释性 计算机科学 人工智能 规范(哲学) 字错误率 机器学习 核化 核希尔伯特再生空间 支持向量机 模式识别(心理学) 希尔伯特空间 算法 数学 参数化复杂度 数学分析 政治学 法学
作者
Xubing Yang,Zhichun Hua,Li Zhang,Xijian Fan,Fuquan Zhang,Qiaolin Ye,Liyong Fu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109722-109722 被引量:30
标识
DOI:10.1016/j.patcog.2023.109722
摘要

Machine learning-based fire detection/recognition is very popular in forest-monitoring systems. However, without considering the prior knowledge, e.g., equal attention on both classes of the fire and non-fire samples, fire miss-detected phenomena frequently appeared in the current methods. In this work, considering model’s interpretability and the limited data for model-training, we propose a novel pixel-precision method, termed as PreVM (Preferred Vector Machine). To guarantee high fire detection rate under precise control, a new L0 norm constraint is introduced to the fire class. Computationally, instead of the traditional L1 re-weighted techniques in L0 norm approximation, this L0 constraint can be converted into linear inequality and incorporated into the process of parameter selection. To further speed up model-training and reduce error warning rate, we also present a kernel-based L1 norm PreVM (L1-PreVM). Theoretically, we firstly prove the existence of dual representation for the general Lp (p≥1) norm regularization problems in RKHS (Reproducing Kernel Hilbert Space). Then, we provide a mathematical evidence for L1 norm kernelization to conquer the case when feature samples do not appear in pairs. The work also includes an extensive experimentation on the real forest fire images and videos. Compared with the-state-of-art methods, the results show that our PreVM is capable of simultaneously achieving higher fire detection rates and lower error warning rates, and L1-PreVM is also superior in real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许子健发布了新的文献求助10
1秒前
852应助Chenzr采纳,获得10
4秒前
好运连连完成签到 ,获得积分10
4秒前
happy完成签到 ,获得积分10
5秒前
科研通AI5应助逆行的百合采纳,获得20
6秒前
麻辣修勾完成签到 ,获得积分10
8秒前
9秒前
9秒前
pengyh8完成签到 ,获得积分10
9秒前
10秒前
LSY完成签到 ,获得积分10
11秒前
会飞的猪qq完成签到,获得积分10
11秒前
晨晨lili完成签到,获得积分10
11秒前
13秒前
13秒前
15秒前
lizhongxin发布了新的文献求助10
16秒前
17秒前
ddddd发布了新的文献求助10
17秒前
17秒前
18秒前
lalala完成签到 ,获得积分10
19秒前
Come_On_luguo发布了新的文献求助10
19秒前
赘婿应助称心嫣娆采纳,获得10
19秒前
77发布了新的文献求助10
19秒前
curryif发布了新的文献求助10
20秒前
Akim应助八零采纳,获得10
20秒前
zys发布了新的文献求助10
20秒前
21秒前
ED应助lizhongxin采纳,获得10
22秒前
亿眼万年完成签到,获得积分10
23秒前
curryif完成签到,获得积分10
28秒前
28秒前
史淼荷发布了新的文献求助10
28秒前
28秒前
hyhyhyhy发布了新的文献求助10
29秒前
32秒前
科研通AI5应助Stting采纳,获得30
33秒前
淡定发布了新的文献求助10
33秒前
八零发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190