UniFrac公司
优势比
α多样性
医学
β多样性
置信区间
呼吸系统
环境卫生
逻辑回归
生理学
生物
内科学
生态学
细菌
物种多样性
16S核糖体RNA
物种丰富度
遗传学
作者
Xin Er Frances Jin,Dorrain Yanwen Low,Lina Ang,Lu Lu,Xin Yin,Yue Tan,Alex K. Y. Lee,Wei Jie Seow
标识
DOI:10.1016/j.envres.2023.116392
摘要
Air pollution is one of the leading causes of overall mortality globally. Cooking emissions are a major source of fine particulate matter (PM2.5). However, studies on their potential perturbations on the nasal microbiota as well as their association with respiratory health are lacking. This pilot study aims to assess the environmental air quality among occupational cooks and its associations with nasal microbiota and respiratory symptoms. A total of 20 cooks (exposed) and 20 unexposed controls (mainly office workers), were recruited in Singapore from 2019 to 2021. Information on sociodemographic factors, cooking methods, and self-reported respiratory symptoms were collected using a questionnaire. Personal PM2.5 concentrations and reactive oxygen species (ROS) levels were measured using portable sensors and filter samplers. DNA was extracted from nasal swabs and sequenced using 16s sequencing. Alpha-diversity and beta-diversity were calculated, and between-group variation analysis of species was performed. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between exposure groups and self-reported respiratory symptoms. Higher daily mean PM2.5 (P = 2 × 10-7) and environmental ROS exposure (P = 3.25 × 10-7) were observed in the exposed group. Alpha diversity of the nasal microbiota between the two groups was not significantly different. However, beta diversity was significantly different (unweighted UniFrac P = 1.11 × 10-5, weighted UniFrac P = 5.42 × 10-6) between the two exposure groups. In addition, certain taxa of bacteria were slightly more abundant in the exposed group compared to unexposed controls. There were no significant associations between the exposure groups and self-reported respiratory symptoms. In summary, the exposed group had higher PM2.5 and ROS exposure levels and altered nasal microbiotas as compared to unexposed controls, though further studies are required to replicate these findings in a larger population.
科研通智能强力驱动
Strongly Powered by AbleSci AI