EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions

脑电图 深度学习 人工智能 计算机科学 卷积神经网络 人工神经网络 特征提取 模式识别(心理学) 特征(语言学) 机器学习 心理学 神经科学 语言学 哲学
作者
Mohsen Parsa,Habib Yousefi Rad,Hadi Vaezi,Gholam‐Ali Hossein‐Zadeh,Seyed Kamaledin Setarehdan,Reza Rostami,Hana Rostami,Abdol-Hossein Vahabie
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107683-107683 被引量:15
标识
DOI:10.1016/j.cmpb.2023.107683
摘要

The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ±7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N=18), Alzheimer's (N=11), and schizophrenia (N=11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个正经人完成签到,获得积分10
刚刚
cdercder应助Binbin采纳,获得10
刚刚
光亮的城发布了新的文献求助10
1秒前
1秒前
1秒前
曾经的臻完成签到,获得积分10
1秒前
66发布了新的文献求助10
2秒前
冷雨发布了新的文献求助10
2秒前
2秒前
yuan发布了新的文献求助10
3秒前
3秒前
爆米花应助壮观的若之采纳,获得10
3秒前
Lucas应助Yummy采纳,获得10
3秒前
称心的冥王星完成签到,获得积分10
4秒前
Akim应助欧欧欧导采纳,获得10
4秒前
慕青应助西北采纳,获得10
4秒前
herdwind完成签到,获得积分10
4秒前
开放的斌发布了新的文献求助10
4秒前
Xiaoxiao应助封印采纳,获得10
5秒前
顺心的皮卡丘完成签到 ,获得积分10
5秒前
Lucas应助Greeze采纳,获得10
5秒前
SYLH应助真实的火车采纳,获得10
5秒前
田様应助ZXR采纳,获得10
5秒前
科目三应助none采纳,获得10
5秒前
欢呼钧完成签到,获得积分10
6秒前
大曼完成签到,获得积分10
7秒前
7秒前
rabbitsang发布了新的文献求助20
7秒前
xiaohong完成签到 ,获得积分10
8秒前
JYM发布了新的文献求助10
8秒前
gnr2000发布了新的文献求助10
8秒前
科研通AI5应助cyz采纳,获得10
8秒前
李健应助zhang采纳,获得30
8秒前
春春发布了新的文献求助10
8秒前
阿呸发布了新的文献求助10
9秒前
隐形曼青应助高贵路灯采纳,获得10
9秒前
贪玩鸵鸟完成签到,获得积分10
9秒前
10秒前
WDD完成签到,获得积分10
10秒前
Orange应助蔬菜人采纳,获得10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754285
求助须知:如何正确求助?哪些是违规求助? 3297889
关于积分的说明 10101210
捐赠科研通 3012439
什么是DOI,文献DOI怎么找? 1654592
邀请新用户注册赠送积分活动 788968
科研通“疑难数据库(出版商)”最低求助积分说明 753113