亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale Transformer Network With Edge-Aware Pre-Training for Cross-Modality MR Image Synthesis

基本事实 人工智能 计算机科学 编码器 模态(人机交互) 自编码 模式识别(心理学) GSM演进的增强数据速率 深度学习 计算机视觉 操作系统
作者
Yonghao Li,Tao Zhou,Kelei He,Yi Zhou,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3395-3407 被引量:21
标识
DOI:10.1109/tmi.2023.3288001
摘要

Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones. Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model. However, it is often challenging to obtain sufficient paired data for supervised training. In reality, we often have a small number of paired data while a large number of unpaired data. To take advantage of both paired and unpaired data, in this paper, we propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis. Specifically, an Edge-preserving Masked AutoEncoder (Edge-MAE) is first pre-trained in a self-supervised manner to simultaneously perform 1) image imputation for randomly masked patches in each image and 2) whole edge map estimation, which effectively learns both contextual and structural information. Besides, a novel patch-wise loss is proposed to enhance the performance of Edge-MAE by treating different masked patches differently according to the difficulties of their respective imputations. Based on this proposed pre-training, in the subsequent fine-tuning stage, a Dual-scale Selective Fusion (DSF) module is designed (in our MT-Net) to synthesize missing-modality images by integrating multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Furthermore, this pre-trained encoder is also employed to extract high-level features from the synthesized image and corresponding ground-truth image, which are required to be similar (consistent) in the training. Experimental results show that our MT-Net achieves comparable performance to the competing methods even using 70% of all available paired data. Our code will be released at https://github.com/lyhkevin/MT-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
48秒前
姗姗发布了新的文献求助10
53秒前
英俊的铭应助姗姗采纳,获得30
1分钟前
姗姗完成签到,获得积分10
1分钟前
852应助堪冷之采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
fangye发布了新的文献求助100
2分钟前
3分钟前
xingsixs完成签到 ,获得积分10
3分钟前
整齐的不评完成签到,获得积分10
3分钟前
李健的小迷弟应助xl采纳,获得10
4分钟前
可夫司机完成签到 ,获得积分10
4分钟前
Yian应助科研通管家采纳,获得10
4分钟前
4分钟前
xl发布了新的文献求助10
4分钟前
fangye完成签到,获得积分10
4分钟前
5分钟前
王洋发布了新的文献求助10
5分钟前
5分钟前
xinxin0902发布了新的文献求助10
5分钟前
xinxin0902完成签到,获得积分10
5分钟前
sissiarno应助科研通管家采纳,获得30
6分钟前
温柔板栗应助科研通管家采纳,获得10
6分钟前
sissiarno应助科研通管家采纳,获得30
6分钟前
7分钟前
堪冷之发布了新的文献求助30
7分钟前
科研通AI6应助堪冷之采纳,获得10
7分钟前
堪冷之完成签到,获得积分10
8分钟前
sissiarno应助科研通管家采纳,获得30
8分钟前
无用的老董西完成签到 ,获得积分10
9分钟前
9分钟前
weibo完成签到,获得积分10
9分钟前
9分钟前
sissiarno应助科研通管家采纳,获得30
10分钟前
yb完成签到,获得积分10
10分钟前
大羊完成签到 ,获得积分10
10分钟前
飞天大南瓜完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641