Multi-Scale Transformer Network With Edge-Aware Pre-Training for Cross-Modality MR Image Synthesis

基本事实 人工智能 计算机科学 编码器 模态(人机交互) 自编码 模式识别(心理学) GSM演进的增强数据速率 深度学习 计算机视觉 操作系统
作者
Yonghao Li,Tao Zhou,Kelei He,Yi Zhou,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3395-3407 被引量:21
标识
DOI:10.1109/tmi.2023.3288001
摘要

Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones. Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model. However, it is often challenging to obtain sufficient paired data for supervised training. In reality, we often have a small number of paired data while a large number of unpaired data. To take advantage of both paired and unpaired data, in this paper, we propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis. Specifically, an Edge-preserving Masked AutoEncoder (Edge-MAE) is first pre-trained in a self-supervised manner to simultaneously perform 1) image imputation for randomly masked patches in each image and 2) whole edge map estimation, which effectively learns both contextual and structural information. Besides, a novel patch-wise loss is proposed to enhance the performance of Edge-MAE by treating different masked patches differently according to the difficulties of their respective imputations. Based on this proposed pre-training, in the subsequent fine-tuning stage, a Dual-scale Selective Fusion (DSF) module is designed (in our MT-Net) to synthesize missing-modality images by integrating multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Furthermore, this pre-trained encoder is also employed to extract high-level features from the synthesized image and corresponding ground-truth image, which are required to be similar (consistent) in the training. Experimental results show that our MT-Net achieves comparable performance to the competing methods even using 70% of all available paired data. Our code will be released at https://github.com/lyhkevin/MT-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蜗牛发布了新的文献求助10
刚刚
1秒前
ty完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
顾矜应助糯米采纳,获得10
1秒前
1秒前
诚心淇发布了新的文献求助10
1秒前
2秒前
小蘑菇应助端庄新烟采纳,获得10
2秒前
孔子涵完成签到,获得积分10
2秒前
Luckqi6688完成签到,获得积分10
2秒前
归尘发布了新的文献求助10
2秒前
2秒前
无花果应助蒲公英采纳,获得10
3秒前
夹心热狗发布了新的文献求助10
4秒前
电线杆杆发布了新的文献求助10
5秒前
5秒前
yara完成签到 ,获得积分10
5秒前
6秒前
hume发布了新的文献求助10
6秒前
6秒前
6秒前
hzzzz发布了新的文献求助10
6秒前
zy完成签到,获得积分10
6秒前
Woke发布了新的文献求助10
7秒前
搜集达人应助京京采纳,获得10
7秒前
科目三应助风趣雪卉采纳,获得10
7秒前
诚心淇完成签到,获得积分10
7秒前
大个应助yuyu采纳,获得10
7秒前
orixero应助123fan采纳,获得10
7秒前
培乐多完成签到,获得积分10
8秒前
Foalphaz发布了新的文献求助10
8秒前
9秒前
积极岂愈发布了新的文献求助10
10秒前
10秒前
duoduoduo应助小蜗牛采纳,获得10
10秒前
liuliu发布了新的文献求助10
10秒前
小猪快跑完成签到,获得积分10
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066