Multi-Scale Transformer Network With Edge-Aware Pre-Training for Cross-Modality MR Image Synthesis

基本事实 人工智能 计算机科学 编码器 模态(人机交互) 自编码 模式识别(心理学) GSM演进的增强数据速率 深度学习 计算机视觉 操作系统
作者
Yonghao Li,Tao Zhou,Kelei He,Yi Zhou,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3395-3407 被引量:21
标识
DOI:10.1109/tmi.2023.3288001
摘要

Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones. Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model. However, it is often challenging to obtain sufficient paired data for supervised training. In reality, we often have a small number of paired data while a large number of unpaired data. To take advantage of both paired and unpaired data, in this paper, we propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis. Specifically, an Edge-preserving Masked AutoEncoder (Edge-MAE) is first pre-trained in a self-supervised manner to simultaneously perform 1) image imputation for randomly masked patches in each image and 2) whole edge map estimation, which effectively learns both contextual and structural information. Besides, a novel patch-wise loss is proposed to enhance the performance of Edge-MAE by treating different masked patches differently according to the difficulties of their respective imputations. Based on this proposed pre-training, in the subsequent fine-tuning stage, a Dual-scale Selective Fusion (DSF) module is designed (in our MT-Net) to synthesize missing-modality images by integrating multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Furthermore, this pre-trained encoder is also employed to extract high-level features from the synthesized image and corresponding ground-truth image, which are required to be similar (consistent) in the training. Experimental results show that our MT-Net achieves comparable performance to the competing methods even using 70% of all available paired data. Our code will be released at https://github.com/lyhkevin/MT-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的柠檬完成签到,获得积分10
1秒前
1秒前
鲁万仇完成签到,获得积分10
1秒前
2秒前
栉娜方糖完成签到 ,获得积分10
2秒前
hydroxyl完成签到,获得积分10
4秒前
香冢弃了残红完成签到,获得积分10
5秒前
上官若男应助微笑越泽采纳,获得10
5秒前
JunHan发布了新的文献求助10
5秒前
6秒前
huibzh发布了新的文献求助10
7秒前
困困困完成签到,获得积分10
8秒前
zy发布了新的文献求助10
8秒前
wqeqa发布了新的文献求助10
8秒前
时衍发布了新的文献求助10
8秒前
Renaissance发布了新的文献求助20
9秒前
11秒前
JamesPei应助困困困采纳,获得10
11秒前
陈豆豆发布了新的文献求助10
11秒前
Sophie完成签到,获得积分10
12秒前
14秒前
科研通AI6.1应助小申采纳,获得10
14秒前
微笑越泽完成签到,获得积分10
15秒前
zy关闭了zy文献求助
15秒前
SciGPT应助不二家的卡农采纳,获得10
15秒前
冷静白亦完成签到,获得积分10
16秒前
16秒前
罗兰小云完成签到,获得积分10
16秒前
17秒前
18秒前
爆米花应助风凌采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
璀璨发布了新的文献求助10
21秒前
21秒前
行雨发布了新的文献求助10
21秒前
天马行空完成签到,获得积分10
21秒前
22秒前
22秒前
淡定宛白完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742484
求助须知:如何正确求助?哪些是违规求助? 5408853
关于积分的说明 15345143
捐赠科研通 4883750
什么是DOI,文献DOI怎么找? 2625301
邀请新用户注册赠送积分活动 1574150
关于科研通互助平台的介绍 1531084