Multi-Scale Transformer Network With Edge-Aware Pre-Training for Cross-Modality MR Image Synthesis

基本事实 人工智能 计算机科学 编码器 模态(人机交互) 自编码 模式识别(心理学) GSM演进的增强数据速率 深度学习 计算机视觉 操作系统
作者
Yonghao Li,Tao Zhou,Kelei He,Yi Zhou,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3395-3407 被引量:17
标识
DOI:10.1109/tmi.2023.3288001
摘要

Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones. Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model. However, it is often challenging to obtain sufficient paired data for supervised training. In reality, we often have a small number of paired data while a large number of unpaired data. To take advantage of both paired and unpaired data, in this paper, we propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis. Specifically, an Edge-preserving Masked AutoEncoder (Edge-MAE) is first pre-trained in a self-supervised manner to simultaneously perform 1) image imputation for randomly masked patches in each image and 2) whole edge map estimation, which effectively learns both contextual and structural information. Besides, a novel patch-wise loss is proposed to enhance the performance of Edge-MAE by treating different masked patches differently according to the difficulties of their respective imputations. Based on this proposed pre-training, in the subsequent fine-tuning stage, a Dual-scale Selective Fusion (DSF) module is designed (in our MT-Net) to synthesize missing-modality images by integrating multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Furthermore, this pre-trained encoder is also employed to extract high-level features from the synthesized image and corresponding ground-truth image, which are required to be similar (consistent) in the training. Experimental results show that our MT-Net achieves comparable performance to the competing methods even using 70% of all available paired data. Our code will be released at https://github.com/lyhkevin/MT-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助小瓶子采纳,获得10
刚刚
科研通AI2S应助334niubi666采纳,获得10
1秒前
桐桐应助纯情的碧玉采纳,获得10
2秒前
3秒前
3秒前
5秒前
科研通AI2S应助ewk采纳,获得10
5秒前
8秒前
幽默鱼完成签到,获得积分10
11秒前
Joo发布了新的文献求助10
12秒前
年年发布了新的文献求助10
12秒前
傅以柳完成签到,获得积分20
12秒前
13秒前
zorro3574发布了新的文献求助30
14秒前
s_s完成签到,获得积分10
16秒前
ab发布了新的文献求助10
16秒前
李健的小迷弟应助张泽宇采纳,获得10
17秒前
zhk关闭了zhk文献求助
17秒前
小马甲应助Hh采纳,获得10
18秒前
20秒前
ab完成签到,获得积分10
23秒前
24秒前
科學路人甲应助yemiao采纳,获得10
24秒前
科研通AI2S应助ewk采纳,获得10
24秒前
所所应助lsx采纳,获得10
24秒前
334niubi666发布了新的文献求助10
24秒前
Liu完成签到,获得积分10
25秒前
111发布了新的文献求助10
26秒前
lwroche发布了新的文献求助10
27秒前
小瓶子发布了新的文献求助10
28秒前
29秒前
辞清完成签到 ,获得积分10
30秒前
抹缇卡完成签到 ,获得积分10
32秒前
酒石酸完成签到 ,获得积分10
32秒前
33秒前
喧泫发布了新的文献求助10
33秒前
33秒前
34秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
CodeCraft应助科研通管家采纳,获得10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308459
求助须知:如何正确求助?哪些是违规求助? 2941791
关于积分的说明 8505743
捐赠科研通 2616655
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648928