Multi-Scale Transformer Network With Edge-Aware Pre-Training for Cross-Modality MR Image Synthesis

基本事实 人工智能 计算机科学 编码器 模态(人机交互) 自编码 模式识别(心理学) GSM演进的增强数据速率 深度学习 计算机视觉 操作系统
作者
Yonghao Li,Tao Zhou,Kelei He,Yi Zhou,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3395-3407 被引量:21
标识
DOI:10.1109/tmi.2023.3288001
摘要

Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones. Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model. However, it is often challenging to obtain sufficient paired data for supervised training. In reality, we often have a small number of paired data while a large number of unpaired data. To take advantage of both paired and unpaired data, in this paper, we propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis. Specifically, an Edge-preserving Masked AutoEncoder (Edge-MAE) is first pre-trained in a self-supervised manner to simultaneously perform 1) image imputation for randomly masked patches in each image and 2) whole edge map estimation, which effectively learns both contextual and structural information. Besides, a novel patch-wise loss is proposed to enhance the performance of Edge-MAE by treating different masked patches differently according to the difficulties of their respective imputations. Based on this proposed pre-training, in the subsequent fine-tuning stage, a Dual-scale Selective Fusion (DSF) module is designed (in our MT-Net) to synthesize missing-modality images by integrating multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Furthermore, this pre-trained encoder is also employed to extract high-level features from the synthesized image and corresponding ground-truth image, which are required to be similar (consistent) in the training. Experimental results show that our MT-Net achieves comparable performance to the competing methods even using 70% of all available paired data. Our code will be released at https://github.com/lyhkevin/MT-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助秋日繁星采纳,获得10
1秒前
wanci应助香蕉秋蝶采纳,获得10
1秒前
1秒前
2秒前
2秒前
Gyz完成签到,获得积分10
2秒前
BowieHuang应助调皮的滑板采纳,获得10
3秒前
3秒前
Otter发布了新的文献求助10
4秒前
爆米花应助dakjdia采纳,获得10
4秒前
朱一龙完成签到,获得积分10
5秒前
6秒前
6秒前
多多指教完成签到,获得积分10
7秒前
幼儿园老大完成签到,获得积分10
7秒前
小陈1122发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
wzjs发布了新的文献求助10
9秒前
不配.应助hky采纳,获得80
10秒前
浮游应助Ivy采纳,获得10
11秒前
12秒前
12秒前
12秒前
Meredith发布了新的文献求助10
12秒前
13秒前
13秒前
yys发布了新的文献求助30
13秒前
Haijiao发布了新的文献求助10
14秒前
Yang完成签到,获得积分10
15秒前
FashionBoy应助小陈1122采纳,获得10
15秒前
15秒前
Linos应助dafhluih采纳,获得10
15秒前
16秒前
孙勇发发布了新的文献求助10
16秒前
xiaomeng发布了新的文献求助10
16秒前
安秀丽发布了新的文献求助10
18秒前
科研通AI6应助舒适的素采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075