Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jianchuan Yang,Ying Zhang,Dawei Zhang,Yiming Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:413: 116120-116120 被引量:83
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
march发布了新的文献求助10
1秒前
可爱傥发布了新的文献求助10
1秒前
菲比完成签到,获得积分10
1秒前
小马甲应助狄如波采纳,获得10
1秒前
1900191497发布了新的文献求助10
1秒前
纯真的鑫发布了新的文献求助10
1秒前
1秒前
青年才俊发布了新的文献求助10
2秒前
2秒前
优美元枫完成签到,获得积分10
3秒前
Puffkten发布了新的文献求助10
3秒前
nnyyaaa发布了新的文献求助10
4秒前
陈哥完成签到,获得积分20
4秒前
无花果应助CBWKEYANTONG123采纳,获得10
4秒前
4秒前
领导范儿应助炙热曼梅采纳,获得10
4秒前
畅快的眼神完成签到,获得积分10
4秒前
jergen发布了新的文献求助10
4秒前
5秒前
冷艳的芯完成签到,获得积分10
6秒前
7秒前
Ahj发布了新的文献求助10
7秒前
Stroeve发布了新的文献求助10
7秒前
PatrickPei应助珠科19070采纳,获得10
7秒前
852应助珠科19070采纳,获得10
7秒前
万能图书馆应助珠科19070采纳,获得10
7秒前
斯文败类应助珠科19070采纳,获得10
7秒前
善学以致用应助bbrfu采纳,获得10
7秒前
情怀应助淡定的紫青采纳,获得10
8秒前
一个冷漠无情的人完成签到,获得积分10
8秒前
小二郎应助欢呼的觅波采纳,获得10
8秒前
guanshujuan发布了新的文献求助10
8秒前
8秒前
1900191497完成签到,获得积分20
9秒前
戚薇发布了新的文献求助10
9秒前
9秒前
齐小明完成签到,获得积分20
9秒前
壮观百招完成签到,获得积分10
10秒前
大胆听莲完成签到,获得积分10
11秒前
jergen完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619481
求助须知:如何正确求助?哪些是违规求助? 4704241
关于积分的说明 14926617
捐赠科研通 4760056
什么是DOI,文献DOI怎么找? 2550615
邀请新用户注册赠送积分活动 1513368
关于科研通互助平台的介绍 1474450