Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jianchuan Yang,Ying Zhang,Dawei Zhang,Yiming Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:413: 116120-116120 被引量:83
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小叶子采纳,获得10
1秒前
赘婿应助gsgg采纳,获得10
1秒前
1秒前
www111发布了新的文献求助10
2秒前
小二郎应助圆子采纳,获得10
2秒前
2秒前
4秒前
4秒前
5秒前
思源应助ping采纳,获得10
5秒前
脑洞疼应助Joker采纳,获得10
6秒前
李小明完成签到,获得积分10
7秒前
温暖芒果发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
孙周发布了新的文献求助10
10秒前
蚕豆主播发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
www111完成签到,获得积分20
14秒前
14秒前
chu关闭了chu文献求助
14秒前
小丁1127完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
ping完成签到,获得积分10
16秒前
小叶子发布了新的文献求助10
16秒前
玄魁完成签到,获得积分10
17秒前
17秒前
断愚发布了新的文献求助10
17秒前
Joker发布了新的文献求助10
19秒前
20秒前
20秒前
青山完成签到,获得积分20
20秒前
汉堡包应助sxh采纳,获得30
21秒前
21秒前
clara完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675445
求助须知:如何正确求助?哪些是违规求助? 4946851
关于积分的说明 15153495
捐赠科研通 4834824
什么是DOI,文献DOI怎么找? 2589661
邀请新用户注册赠送积分活动 1543377
关于科研通互助平台的介绍 1501192