Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jianchuan Yang,Ying Zhang,Dawei Zhang,Yiming Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:413: 116120-116120 被引量:20
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
DDDDD发布了新的文献求助10
2秒前
2秒前
媛57发布了新的文献求助10
3秒前
3秒前
Akim应助菲菲呀采纳,获得10
4秒前
OPV发布了新的文献求助10
5秒前
6秒前
张三完成签到,获得积分10
7秒前
7秒前
墨酒发布了新的文献求助10
7秒前
白剑通发布了新的文献求助10
8秒前
8秒前
星辰大海应助稳重的烙采纳,获得10
9秒前
liiiiiii发布了新的文献求助10
10秒前
10秒前
kyt完成签到,获得积分10
12秒前
lu发布了新的文献求助10
14秒前
1122完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助OPV采纳,获得10
17秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
Jenny应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
美好斓发布了新的文献求助10
20秒前
科研助手6应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得30
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
大圆饼子应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425