Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jianchuan Yang,Ying Zhang,Dawei Zhang,Yiming Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:413: 116120-116120 被引量:83
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归仔发布了新的文献求助10
1秒前
诚心的以寒完成签到,获得积分10
2秒前
风信子完成签到,获得积分10
2秒前
2秒前
3秒前
zz发布了新的文献求助10
3秒前
lwq发布了新的文献求助10
3秒前
3秒前
一木张完成签到,获得积分10
4秒前
4秒前
天天快乐应助马霄鑫采纳,获得10
4秒前
4秒前
4秒前
咖啡不苦完成签到,获得积分10
4秒前
CodeCraft应助快乐小海带采纳,获得10
5秒前
叶子发布了新的文献求助10
6秒前
云雨完成签到 ,获得积分10
6秒前
Jasper应助MJJJ采纳,获得10
7秒前
7秒前
8秒前
叁叁肆发布了新的文献求助10
8秒前
超级白玉关注了科研通微信公众号
8秒前
闰土发布了新的文献求助10
9秒前
无辜的鼠标完成签到,获得积分10
9秒前
10秒前
慧慧发布了新的文献求助10
10秒前
困就睡觉完成签到 ,获得积分10
10秒前
淡如水发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
15秒前
15秒前
15秒前
16秒前
如意的小丸子完成签到,获得积分20
16秒前
16秒前
Selena完成签到 ,获得积分20
17秒前
思源应助Passion采纳,获得10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488