Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jianchuan Yang,Ying Zhang,Dawei Zhang,Yiming Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:413: 116120-116120 被引量:62
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00完成签到,获得积分10
刚刚
善学以致用应助艺玲采纳,获得10
刚刚
6秒前
7秒前
10秒前
Orange应助Dd18753801528采纳,获得10
10秒前
风轻青柠完成签到,获得积分10
11秒前
材料生发布了新的文献求助10
11秒前
my发布了新的文献求助10
12秒前
哆啦B梦完成签到,获得积分10
12秒前
12秒前
gusgusgus发布了新的文献求助10
12秒前
13秒前
追风少年发布了新的文献求助10
13秒前
13秒前
蔚蓝发布了新的文献求助10
14秒前
艺玲发布了新的文献求助10
16秒前
正常发布了新的文献求助10
16秒前
多多肉完成签到,获得积分10
16秒前
有点儿微胖完成签到,获得积分10
17秒前
豆4799完成签到,获得积分10
19秒前
ruby关注了科研通微信公众号
20秒前
JUGG发布了新的文献求助10
20秒前
牛马鹅完成签到,获得积分20
20秒前
gusgusgus完成签到,获得积分10
22秒前
Zy发布了新的文献求助10
23秒前
24秒前
24秒前
一平方米的大草原完成签到 ,获得积分10
25秒前
QINXIAOTONG完成签到,获得积分10
26秒前
Owen应助12123浪采纳,获得10
26秒前
lele完成签到,获得积分10
27秒前
我是老大应助大海捞针2025采纳,获得10
28秒前
华仔应助沉静弘文采纳,获得10
28秒前
28秒前
29秒前
李健应助tanfor采纳,获得10
29秒前
英俊的铭应助直率的雪巧采纳,获得10
30秒前
32秒前
啦啦啦完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164