Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jie Yang,Ying Zhang,Dawei Zhang,Yanqing Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:413: 116120-116120 被引量:9
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuaige完成签到,获得积分10
1秒前
传奇3应助呆梨医生采纳,获得10
2秒前
3秒前
研友_ngqjz8发布了新的文献求助30
4秒前
4秒前
一亿发布了新的文献求助10
5秒前
热情的板栗完成签到,获得积分10
5秒前
petrichor发布了新的文献求助10
8秒前
9秒前
wanci应助风趣依瑶采纳,获得10
9秒前
Yultuz友发布了新的文献求助10
10秒前
paparazzi221应助壮观千筹采纳,获得50
11秒前
橘子发布了新的文献求助10
11秒前
111完成签到,获得积分10
11秒前
困困困困完成签到,获得积分10
11秒前
ding应助一亿采纳,获得10
12秒前
华仔应助小羊采纳,获得10
13秒前
科研通AI2S应助PhDshi采纳,获得10
14秒前
14秒前
pwy应助科研通管家采纳,获得10
15秒前
困困困困发布了新的文献求助10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得30
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
15秒前
都是应助科研通管家采纳,获得30
15秒前
木子发布了新的文献求助10
15秒前
张诗远完成签到,获得积分10
17秒前
减肥为窈窕完成签到,获得积分10
20秒前
英俊的铭应助juju采纳,获得10
24秒前
26秒前
lio发布了新的文献求助10
28秒前
29秒前
lxy发布了新的文献求助10
29秒前
旺旺碎发布了新的文献求助10
29秒前
CipherSage应助petrichor采纳,获得10
30秒前
大模型应助森巴小妹采纳,获得10
32秒前
zzzhw发布了新的文献求助10
33秒前
852应助复杂小松鼠采纳,获得10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160995
求助须知:如何正确求助?哪些是违规求助? 2812220
关于积分的说明 7894949
捐赠科研通 2471119
什么是DOI,文献DOI怎么找? 1315906
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086