Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jianchuan Yang,Ying Zhang,Dawei Zhang,Yiming Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:413: 116120-116120 被引量:56
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助兜子采纳,获得10
刚刚
刚刚
寒冷怜南发布了新的文献求助10
刚刚
manjusaka发布了新的文献求助20
1秒前
王珺发布了新的文献求助10
2秒前
3秒前
overlood完成签到 ,获得积分10
4秒前
5秒前
tuyfytjt发布了新的文献求助10
6秒前
wangzheng发布了新的文献求助10
6秒前
当当发布了新的文献求助10
6秒前
火火发布了新的文献求助30
7秒前
冷艳薯片发布了新的文献求助20
7秒前
马里奥发布了新的文献求助10
10秒前
科科完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
13秒前
阿宁宁完成签到 ,获得积分10
16秒前
聪慧小霜应助火火采纳,获得10
16秒前
当当完成签到,获得积分20
17秒前
咄咄完成签到 ,获得积分10
17秒前
zhang26xian完成签到,获得积分10
17秒前
18秒前
20秒前
NIUB完成签到,获得积分10
22秒前
22秒前
23秒前
高山七石发布了新的文献求助10
23秒前
郑蒸日上发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
Sofia完成签到 ,获得积分0
25秒前
冷艳薯片发布了新的文献求助20
26秒前
26秒前
火火完成签到,获得积分10
28秒前
28秒前
28秒前
28秒前
thanhmanhp完成签到,获得积分10
29秒前
高山七石完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447