Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology

人工神经网络 计算力学 不连续性分类 领域(数学) 计算机科学 运动学 领域(数学分析) 不变(物理) 人工智能 算法 数学 有限元法 经典力学 物理 数学分析 工程类 结构工程 数学物理 纯数学
作者
Yu Diao,Jianchuan Yang,Ying Zhang,Dawei Zhang,Yiming Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:413: 116120-116120 被引量:20
标识
DOI:10.1016/j.cma.2023.116120
摘要

Physics-informed neural networks (PINNs) are widely used in the field of solid mechanics. Currently, PINNs are mainly used to solve problems involving single homogeneous materials. However, they have limited ability to handle the discontinuities that arise from multi-material, and they lack the capability to rigorously express complex material contact models. We propose a method for solving multi-material problems in solid mechanics using physics-informed neural networks. Inspired by domain decomposition technology, the calculation domain is divided according to the geometric distribution of materials, with different subnetworks applied to represent field variables. This study explains how the invariant momentum balance, kinematic relations, and different constitutive relations controlled by the material properties are incorporated into the subnetworks, and use additional regular terms to describe the contact relations between materials. Various test cases ranging from two-dimensional plane strain problems to three-dimensional stretching problems are solved using the proposed method. We introduce the concept of parameter sharing in multi-task learning (MTL) and incorporate it in the proposed method, which yields additional degrees of freedom in choosing the sharing structure and sharing mode. Compared with common physics-informed neural network algorithms, which are based on fully independent parameters, we develop a network structure with partial sharing structure and all-sharing mode that achieves higher accuracy when solving the example problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的如天完成签到,获得积分10
刚刚
刚刚
常常完成签到,获得积分10
刚刚
刚刚
HH完成签到,获得积分10
刚刚
1秒前
1秒前
SandyH完成签到,获得积分10
1秒前
Jack完成签到,获得积分10
1秒前
白露完成签到 ,获得积分10
1秒前
Owen应助默默柚子采纳,获得10
2秒前
2秒前
隐形的易巧完成签到 ,获得积分10
2秒前
3秒前
Ava应助Autoimmune采纳,获得10
3秒前
科研通AI5应助多变的卡宾采纳,获得10
3秒前
Citrus发布了新的文献求助10
4秒前
科目三应助莉莉采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
惠惠发布了新的文献求助10
5秒前
深夜看文献的小刘完成签到,获得积分10
5秒前
菊菊发布了新的文献求助10
5秒前
5秒前
猪猪发布了新的文献求助10
6秒前
胖豆发布了新的文献求助10
6秒前
巴啦啦能量完成签到 ,获得积分10
6秒前
7秒前
完美凝海发布了新的文献求助30
7秒前
科研菜鸟发布了新的文献求助10
7秒前
升学顺利身体健康完成签到,获得积分10
8秒前
8秒前
爱学习发布了新的文献求助10
8秒前
cc发布了新的文献求助10
9秒前
533完成签到,获得积分20
9秒前
科研通AI5应助yx采纳,获得10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762