An electricity load forecasting model based on multilayer dilated LSTM network and attention mechanism

计算机科学 理论(学习稳定性) 钥匙(锁) 电力系统 期限(时间) 人工神经网络 电力负荷 功率(物理) 可靠性工程 数据挖掘 人工智能 机器学习 工程类 电气工程 物理 量子力学 计算机安全
作者
Ye Wang,Wenshuai Jiang,Yunlong Wang,Qiong Song,Tingting Zhang,Dong Qian,Xueling Li
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fenrg.2023.1116465
摘要

From national development to daily life, electric energy is integral to people’s lives. Although the development of electricity should be expected, expansion without restriction will only result in energy waste. The forecasting of electricity load plays an important role in the adjustment of power enterprises’ strategies and the stability of power operation. Recently, the electricity-related data acquisition system has been perfected, and the available load information has gradually reached the minute level. This means that the related load series lengthens and the time and spatial information of load become increasingly complex. In this paper, a load forecasting model based on multilayer dilated long and short-term memory neural network is established. The model uses a multilayer dilated structure to extract load information from long series and to extract information from different dimensions. Moreover, the attention mechanism is used to make the model pay closer attention to the key information in the series as an intermediate variable. Such structures can greatly alleviate the loss in the extraction of long time series information and make use of more valid historical information for future load forecasting. The proposed model is validated using two real datasets. According to load forecasting curves, error curve, and related indices, the proposed method is more accurate and stable in electricity load forecasting than the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助WD采纳,获得10
2秒前
安静问玉发布了新的文献求助10
3秒前
4秒前
4秒前
白夜完成签到,获得积分10
5秒前
6秒前
7秒前
qqzhang发布了新的文献求助10
8秒前
aillyzm发布了新的文献求助10
11秒前
否定之否定完成签到,获得积分10
12秒前
向日葵完成签到,获得积分10
13秒前
Xixicccccccc发布了新的文献求助10
13秒前
14秒前
16秒前
斯文败类应助城南花已开采纳,获得10
19秒前
yueyueya发布了新的文献求助30
20秒前
安静问玉完成签到,获得积分10
21秒前
萌酱发布了新的文献求助10
22秒前
尊敬寒松发布了新的文献求助20
22秒前
23秒前
24秒前
来来发布了新的文献求助10
24秒前
26秒前
Manta完成签到,获得积分10
27秒前
鸣笛应助Xixicccccccc采纳,获得10
27秒前
Tonylin完成签到,获得积分10
29秒前
29秒前
exing完成签到,获得积分10
30秒前
31秒前
任伟超发布了新的文献求助10
31秒前
搜集达人应助贾世冰采纳,获得30
33秒前
34秒前
34秒前
刘欣发布了新的文献求助10
34秒前
彭于晏应助llll采纳,获得10
34秒前
35秒前
35秒前
PCX完成签到,获得积分10
35秒前
我要吃挂面完成签到,获得积分10
36秒前
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993711
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265414
捐赠科研通 3274169
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712