Deep learning ensembles for accurate fog-related low-visibility events forecasting

计算机科学 集成学习 能见度 人工智能 深度学习 超参数 机器学习 集合预报 航程(航空) 预处理器 数据挖掘 物理 材料科学 光学 复合材料
作者
C. Peláez-Rodríguez,Jorge Pérez‐Aracil,A. de Lopez-Diz,C. Casanova-Mateo,Dušan Fister,S. Jiménez‐Fernández,Sancho Salcedo‐Sanz
出处
期刊:Neurocomputing [Elsevier]
卷期号:549: 126435-126435 被引量:15
标识
DOI:10.1016/j.neucom.2023.126435
摘要

In this paper we propose and discuss different Deep Learning-based ensemble algorithms for a problem of low-visibility events prediction due to fog. Specifically, seven different Deep Learning (DL) architectures have been considered, from which multiple individual learners are generated. Hyperparameters of the models, including parameters concerning data preprocessing, models architecture and training procedure, are randomly selected for each model within a pre-defined discrete range. Also, every model is trained with slightly different data sampled randomly, assuring that every models introduce variety in the ensemble. Then, three different information fusion techniques are employed to build the ensemble models. The influence of the filtering process and the elitism level (the percentage of the individual models entering the ensemble) is also assessed. The performance of the proposed methodology have been tested in two real problems of low-visibility events prediction due to orographical and radiation fog, at the north of Spain. Comparison with different Machine Learning, alternative DL algorithms and meteorological-based methods show the good performance of the proposed deep learning ensembles in this problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无言完成签到,获得积分10
1秒前
自信寻真完成签到,获得积分10
1秒前
可爱的函函应助Thinkol采纳,获得10
1秒前
3秒前
顺利的远航完成签到 ,获得积分10
3秒前
Again发布了新的文献求助10
4秒前
4秒前
nn应助自信寻真采纳,获得10
4秒前
li完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
9秒前
10秒前
10秒前
852应助含糊的路人采纳,获得10
10秒前
共享精神应助adden采纳,获得10
11秒前
小马甲应助yyy采纳,获得30
11秒前
中书完成签到,获得积分10
11秒前
haishixigua完成签到,获得积分10
11秒前
段段发布了新的文献求助10
12秒前
12秒前
AD应助micro然采纳,获得10
12秒前
酷波er应助整齐的夏柳采纳,获得10
13秒前
Evander发布了新的文献求助10
13秒前
13秒前
ivan关注了科研通微信公众号
13秒前
子木给子木的求助进行了留言
13秒前
14秒前
huangtaopie发布了新的文献求助10
14秒前
哈哈哈哈哈哈哈哈哈关注了科研通微信公众号
14秒前
15秒前
15秒前
15秒前
库洛洛完成签到,获得积分10
16秒前
打打应助小小采纳,获得10
16秒前
漾漾发布了新的文献求助10
16秒前
17秒前
顾矜应助不知采纳,获得10
18秒前
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240