Increasing the Electrolyte Salinity to Improve the Performance of Anion Exchange Membrane Water Electrolyzers

电解质 电解 化学 超纯水 电导率 离子交换 无机化学 阴极 碱金属 化学工程 离子 电极 生物化学 工程类 物理化学 有机化学
作者
Ruggero Rossi,Rachel F. Taylor,Bruce E. Logan
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (23): 8573-8579 被引量:18
标识
DOI:10.1021/acssuschemeng.3c01245
摘要

Direct operation of anion exchange membrane water electrolyzers (AEMWEs) with near-neutral pH feeds avoids the use of highly alkaline and corrosive solutions. However, using neutral pH solutions currently faces fundamental operational challenges that diminish performance and reduce long-term stability due to poor solution conductivity and low hydroxide ion concentration. Here, we showed that amending near-neutral pH solutions with low concentrations of alkali metal salts in a dry-cathode configuration substantially improved performance and stability. Adding NaClO4 (10 mM) to the anolyte reduced the operating voltage by 0.19 to 2.58 V at 500 mA/cm2 compared to non-saline solutions (2.77 V). However, further increases in the feed salt concentration (100 mM NaClO4) reduced performance (2.64 V) due to a greater co-ion diffusion through the anion exchange membrane. Electrolyzer performance was further improved by utilizing salts with high conductivity such as KNO3. Using a saline anolyte reduced ohmic resistance, resulting in smaller applied voltage and energy consumption for hydrogen generation, while the combined effect of the membrane charge and the electric field direction in the dry-cathode feed configuration minimized ion crossover. Thus, increasing the salinity of near-neutral pH solutions represents a cost-effective strategy to improve the performance of AEMWE compared to ultrapure electrolytes, minimizing risks and costs associated with recirculating highly alkaline solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凹凸曼发布了新的文献求助30
1秒前
1秒前
1秒前
HenryXiao关注了科研通微信公众号
2秒前
2秒前
哈哈哈哈哈哈完成签到,获得积分10
2秒前
天天摸鱼完成签到,获得积分10
2秒前
WQY发布了新的文献求助10
3秒前
Yuan关注了科研通微信公众号
3秒前
bkagyin应助迪迦采纳,获得30
3秒前
wocao完成签到 ,获得积分10
3秒前
彧辰完成签到 ,获得积分10
4秒前
4秒前
感动语蝶发布了新的文献求助30
5秒前
幽默的辣白菜完成签到,获得积分10
5秒前
粉红色泡泡关注了科研通微信公众号
5秒前
5秒前
xue关闭了xue文献求助
5秒前
5秒前
6秒前
6秒前
WuchangI发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
胡杨树2006完成签到,获得积分10
7秒前
阮红亮完成签到,获得积分10
8秒前
陈陈完成签到,获得积分10
8秒前
所所应助桢桢树采纳,获得10
8秒前
9秒前
9秒前
马保国123完成签到,获得积分10
9秒前
9秒前
乔苏惠娜完成签到,获得积分10
9秒前
斯文幻儿发布了新的文献求助10
10秒前
10秒前
快乐小狗完成签到,获得积分10
10秒前
10秒前
ppg123应助dddd采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650