计算机科学
编码器
分割
卷积神经网络
轮廓
骨髓
人工智能
深度学习
骨髓移植
移植
模式识别(心理学)
计算机视觉
病理
医学
外科
计算机图形学(图像)
操作系统
作者
Jun Shi,Zhaohui Wang,Hongyu Kan,Minfan Zhao,Xudong Xue,Bing Yan,Hong An,Jianjun Shen,Joseph Bartlett,Wenqi Lu,Jinming Duan
标识
DOI:10.1109/embc48229.2022.9871824
摘要
The use of total marrow and lymphoid irradiation (TMLI) as part of conditioning regimens for bone marrow transplantation is trending due to its advantages in disease control and low toxicity. Accurate contouring of target structures such as bone and lymph nodes plays an important role in irradiation planning. However, this process is often time-consuming and prone to inter-observer variation. Recently, deep learning methods such as convolutional neural networks (CNNs) and vision transformers have achieved tremendous success in medical image segmentation, therefore enabling fast semiautomatic radiotherapy planning. In this paper, we propose a dual-encoder U-shaped model named DE-Net, to automatically segment the target structures for TMLI. To enhance the learned features, the encoder of DE-Net is composed of parallel CNNs and vision transformers, which can model both local and global contexts. The multi-level features from the two branches are progressively fused by intermediate modules, therefore effectively preserving low-level details. Our experiments demonstrate that the proposed method achieves state-of-the-art results and a significant improvement in lymph node segmentation compared with existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI