EEG-Based Graph Neural Network Classification of Alzheimer’s Disease: An Empirical Evaluation of Functional Connectivity Methods

脑电图 计算机科学 图形 模式识别(心理学) 人工智能 卷积神经网络 功能连接 机器学习 神经科学 心理学 理论计算机科学
作者
Dominik Klepl,Fei He,Min Wu,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2651-2660 被引量:29
标识
DOI:10.1109/tnsre.2022.3204913
摘要

Alzheimer's disease (AD) is the leading form of dementia worldwide. AD disrupts neuronal pathways and thus is commonly viewed as a network disorder. Many studies demonstrate the power of functional connectivity (FC) graph-based biomarkers for automated diagnosis of AD using electroencephalography (EEG). However, various FC measures are commonly utilised, as each aims to quantify a unique aspect of brain coupling. Graph neural networks (GNN) provide a powerful framework for learning on graphs. While a growing number of studies use GNN to classify EEG brain graphs, it is unclear which method should be utilised to estimate the brain graph. We use eight FC measures to estimate FC brain graphs from sensor-level EEG signals. GNN models are trained in order to compare the performance of the selected FC measures. Additionally, three baseline models based on literature are trained for comparison. We show that GNN models perform significantly better than the other baseline models. Moreover, using FC measures to estimate brain graphs improves the performance of GNN compared to models trained using a fixed graph based on the spatial distance between the EEG sensors. However, no FC measure performs consistently better than the other measures. The best GNN reaches 0.984 area under sensitivity-specificity curve (AUC) and 92% accuracy, whereas the best baseline model, a convolutional neural network, has 0.924 AUC and 84.7% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵聚星发布了新的文献求助200
刚刚
科研通AI2S应助周乘风采纳,获得30
刚刚
仁爱听露完成签到 ,获得积分10
刚刚
慕青应助冰美式采纳,获得10
刚刚
1秒前
二东完成签到 ,获得积分10
1秒前
望舒发布了新的文献求助10
1秒前
2秒前
阿尼亚完成签到,获得积分20
2秒前
周凡淇发布了新的文献求助10
6秒前
胡杨发布了新的文献求助10
7秒前
望舒完成签到,获得积分10
8秒前
8秒前
TobyGarfielD发布了新的文献求助10
8秒前
wang完成签到,获得积分10
10秒前
无位公相完成签到,获得积分10
11秒前
冰美式发布了新的文献求助10
13秒前
Akim应助stay采纳,获得10
14秒前
隐形山兰发布了新的文献求助10
14秒前
Wenpandaen应助decademe采纳,获得10
15秒前
正直老九完成签到 ,获得积分10
15秒前
啊强完成签到 ,获得积分10
16秒前
ha完成签到 ,获得积分10
16秒前
17秒前
周乘风完成签到,获得积分20
17秒前
852应助yuna采纳,获得10
18秒前
Wenpandaen应助舒先生采纳,获得10
18秒前
糖呼噜完成签到,获得积分10
19秒前
踏实天空应助黑熊精采纳,获得10
20秒前
20秒前
研友_V8Qmr8完成签到,获得积分10
24秒前
25秒前
赘婿应助科研小趴菜采纳,获得10
25秒前
26秒前
27秒前
吉他平方完成签到,获得积分10
28秒前
28秒前
隐形山兰完成签到,获得积分20
29秒前
雯雯子发布了新的文献求助10
30秒前
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065