CSR: Cascade Conditional Variational Auto Encoder with Socially-aware Regression for Pedestrian Trajectory Prediction

弹道 自编码 计算机科学 回归 人工智能 编码(集合论) 编码器 推论 钥匙(锁) 算法 深度学习 机器学习 数学 统计 物理 操作系统 计算机安全 集合(抽象数据类型) 程序设计语言 天文
作者
Hao Zhou,Dongchun Ren,Xu Yang,Mingyu Fan,Hai Huang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:133: 109030-109030 被引量:5
标识
DOI:10.1016/j.patcog.2022.109030
摘要

Pedestrian trajectory prediction is a key technology in many real applications such as video surveillance, social robot navigation, and autonomous driving, and significant progress has been made in this research topic. However, there remain two limitations of previous studies. First, the losses of the last time steps are heavier weighted than that of the beginning time steps in the objective function at the learning stage, causing the prediction errors generated at the beginning to accumulate to large errors at the last time steps at the inference stage. Second, the prediction results of multiple pedestrians in the prediction horizon might be socially incompatible with the interactions modeled by past trajectories. To overcome these limitations, this work proposes a novel trajectory prediction method called CSR, which consists of a cascaded conditional variational autoencoder (CVAE) module and a socially-aware regression module. The CVAE module estimates the future trajectories in a cascaded sequential manner. Specifically, each CVAE concatenates the past trajectories and the predicted location points so far as the input and predicts the adjacent location at the following time step. The socially-aware regression module generates offsets from the estimated future trajectories to produce the corrected predictions, which are more reasonable and accurate than the estimated trajectories. Experiments results demonstrate that the proposed method exhibits significant improvements over state-of-the-art methods on the Stanford Drone Dataset (SDD) and the ETH/UCY dataset of approximately 38.0% and 22.2%, respectively. The code is available at https://github.com/zhouhao94/CSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北雁发布了新的文献求助10
3秒前
上官若男应助小兰要毕业采纳,获得10
3秒前
DYLAN_ZZ完成签到,获得积分10
4秒前
4秒前
5秒前
十一应助清风荷影采纳,获得30
5秒前
汉堡包应助英俊的老太采纳,获得10
5秒前
不安青牛应助玉子卿采纳,获得10
6秒前
上官若男应助mint采纳,获得10
6秒前
彩虹猫完成签到 ,获得积分10
6秒前
7秒前
byyyy发布了新的文献求助10
8秒前
9秒前
情怀应助北雁采纳,获得10
9秒前
朴素若枫完成签到,获得积分10
10秒前
李健的小迷弟应助夏天采纳,获得10
10秒前
打打应助Ywffffff采纳,获得10
10秒前
11秒前
12秒前
13秒前
13秒前
铁马踏冰河完成签到,获得积分20
14秒前
15秒前
16秒前
17秒前
有魅力忆枫完成签到,获得积分10
17秒前
sci_zt发布了新的文献求助10
18秒前
Hello应助权思远采纳,获得10
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
LYQ发布了新的文献求助10
20秒前
叶雯静完成签到,获得积分20
20秒前
NexusExplorer应助Gleast采纳,获得10
20秒前
Jasper应助司马千风采纳,获得10
21秒前
Ywffffff发布了新的文献求助10
23秒前
蟑螂你好发布了新的文献求助10
23秒前
23秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462411
求助须知:如何正确求助?哪些是违规求助? 3055964
关于积分的说明 9050078
捐赠科研通 2745534
什么是DOI,文献DOI怎么找? 1506438
科研通“疑难数据库(出版商)”最低求助积分说明 696110
邀请新用户注册赠送积分活动 695633