已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Local Semantic Feature Aggregation-Based Transformer for Hyperspectral Image Classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 嵌入 变压器 像素 高光谱成像 特征学习 上下文图像分类 图像(数学) 量子力学 物理 电压
作者
Bing Tu,Xiaolong Liao,Qianming Li,Yishu Peng,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2022.3201145
摘要

Hyperspectral images (HSIs) contain abundant information in the spatial and spectral domains, allowing for a precise characterization of categories of materials. Convolutional neural networks (CNNs) have achieved great success in HSI classification, owing to their excellent ability in local contextual modeling. However, CNNs suffer from fixed filter weights and deep convolutional layers, which lead to a limited receptive field and high computational burden. The recent Vision Transformer (ViT) models long-range dependencies with a self-attention mechanism and has been an alternative backbone to the CNNs traditionally used in HSI classification. However, such transformer-based architectures designate all input pixels of the receptive field as feature tokens in terms of feature embedding and self-attention, which inevitably limits the ability for learning multi-scale features and increases the computational cost. To overcome this issue, we propose a local semantic feature aggregation-based transformer (LSFAT) architecture which allows transformers to represent long-range dependencies of multi-scale features more efficiently. We introduce the concept of the homogeneous region into the transformer by considering a pixel aggregation strategy and further propose neighborhood aggregation-based embedding (NAE) and attention (NAA) modules, which are able to adaptively form multi-scale features and capture locally spatial semantics among them in a hierarchical transformer architecture. A reusable classification token is included together with the feature tokens in the attention calculation. In the last stage, a fully connected layer is employed to perform classification on the reusable token after transformer encoding. We verify the effectiveness of the NAE and NAA modules compared with the traditional ViT through extensive experiments. Our results demonstrate the excellent classification performance of the proposed method in comparison with other state-of-the-art approaches on several public HSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Journey发布了新的文献求助10
2秒前
哒啦啦完成签到,获得积分10
3秒前
江鹿柒柒完成签到,获得积分10
3秒前
Criminology34应助123321采纳,获得10
3秒前
Flexy发布了新的文献求助10
3秒前
xwz完成签到,获得积分10
3秒前
大胆的初阳完成签到,获得积分10
4秒前
威威发布了新的文献求助10
4秒前
maxwell158发布了新的文献求助10
8秒前
研友_qZ6V1Z发布了新的文献求助30
8秒前
9秒前
9秒前
MAO关注了科研通微信公众号
10秒前
921完成签到,获得积分10
11秒前
银子吃好的完成签到,获得积分10
12秒前
许夜云发布了新的文献求助10
13秒前
斯文败类应助西岭采纳,获得10
13秒前
abab完成签到 ,获得积分10
13秒前
16秒前
16秒前
研友_qZ6V1Z完成签到,获得积分10
17秒前
17秒前
情怀应助jjy采纳,获得10
18秒前
18秒前
18秒前
Ava应助郭宇轩采纳,获得10
21秒前
香蕉以菱发布了新的文献求助10
21秒前
科研通AI6应助gndd采纳,获得30
21秒前
王小拉完成签到 ,获得积分10
21秒前
遇上就这样吧应助harry采纳,获得200
22秒前
22秒前
李健应助totolo采纳,获得10
22秒前
Owen应助zai采纳,获得10
22秒前
vax完成签到 ,获得积分10
23秒前
柔弱诗筠发布了新的文献求助10
24秒前
25秒前
岸上牛发布了新的文献求助10
25秒前
小二郎应助吉吉采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355699
求助须知:如何正确求助?哪些是违规求助? 4487559
关于积分的说明 13970591
捐赠科研通 4388263
什么是DOI,文献DOI怎么找? 2410970
邀请新用户注册赠送积分活动 1403518
关于科研通互助平台的介绍 1377055