亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Local Semantic Feature Aggregation-Based Transformer for Hyperspectral Image Classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 嵌入 变压器 像素 高光谱成像 特征学习 上下文图像分类 图像(数学) 量子力学 物理 电压
作者
Bing Tu,Xiaolong Liao,Qianming Li,Yishu Peng,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2022.3201145
摘要

Hyperspectral images (HSIs) contain abundant information in the spatial and spectral domains, allowing for a precise characterization of categories of materials. Convolutional neural networks (CNNs) have achieved great success in HSI classification, owing to their excellent ability in local contextual modeling. However, CNNs suffer from fixed filter weights and deep convolutional layers, which lead to a limited receptive field and high computational burden. The recent Vision Transformer (ViT) models long-range dependencies with a self-attention mechanism and has been an alternative backbone to the CNNs traditionally used in HSI classification. However, such transformer-based architectures designate all input pixels of the receptive field as feature tokens in terms of feature embedding and self-attention, which inevitably limits the ability for learning multi-scale features and increases the computational cost. To overcome this issue, we propose a local semantic feature aggregation-based transformer (LSFAT) architecture which allows transformers to represent long-range dependencies of multi-scale features more efficiently. We introduce the concept of the homogeneous region into the transformer by considering a pixel aggregation strategy and further propose neighborhood aggregation-based embedding (NAE) and attention (NAA) modules, which are able to adaptively form multi-scale features and capture locally spatial semantics among them in a hierarchical transformer architecture. A reusable classification token is included together with the feature tokens in the attention calculation. In the last stage, a fully connected layer is employed to perform classification on the reusable token after transformer encoding. We verify the effectiveness of the NAE and NAA modules compared with the traditional ViT through extensive experiments. Our results demonstrate the excellent classification performance of the proposed method in comparison with other state-of-the-art approaches on several public HSIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
量子星尘发布了新的文献求助10
17秒前
Wenfeifei完成签到,获得积分10
27秒前
郭泓嵩完成签到,获得积分10
44秒前
优美香露发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助80
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
延迟整流钾电流完成签到,获得积分10
1分钟前
1分钟前
李爱国应助优美香露采纳,获得80
1分钟前
1分钟前
2分钟前
优美香露发布了新的文献求助80
2分钟前
思源应助优美香露采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
优美香露发布了新的文献求助10
2分钟前
ZHANG完成签到,获得积分10
2分钟前
yys完成签到,获得积分10
2分钟前
yys10l完成签到,获得积分10
2分钟前
FU发布了新的文献求助10
3分钟前
3分钟前
3分钟前
优美香露发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
NexusExplorer应助优美香露采纳,获得10
4分钟前
科研通AI6应助优美香露采纳,获得10
4分钟前
4分钟前
4分钟前
执着艳发布了新的文献求助150
4分钟前
5分钟前
5分钟前
玩命的糖豆完成签到 ,获得积分10
5分钟前
5分钟前
陈尹蓝完成签到 ,获得积分10
5分钟前
5分钟前
火山有点意思完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657966
求助须知:如何正确求助?哪些是违规求助? 4815528
关于积分的说明 15080720
捐赠科研通 4816288
什么是DOI,文献DOI怎么找? 2577230
邀请新用户注册赠送积分活动 1532260
关于科研通互助平台的介绍 1490823