已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Local Semantic Feature Aggregation-Based Transformer for Hyperspectral Image Classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 嵌入 变压器 像素 高光谱成像 特征学习 上下文图像分类 图像(数学) 量子力学 物理 电压
作者
Bing Tu,Xiaolong Liao,Qianming Li,Yishu Peng,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2022.3201145
摘要

Hyperspectral images (HSIs) contain abundant information in the spatial and spectral domains, allowing for a precise characterization of categories of materials. Convolutional neural networks (CNNs) have achieved great success in HSI classification, owing to their excellent ability in local contextual modeling. However, CNNs suffer from fixed filter weights and deep convolutional layers, which lead to a limited receptive field and high computational burden. The recent Vision Transformer (ViT) models long-range dependencies with a self-attention mechanism and has been an alternative backbone to the CNNs traditionally used in HSI classification. However, such transformer-based architectures designate all input pixels of the receptive field as feature tokens in terms of feature embedding and self-attention, which inevitably limits the ability for learning multi-scale features and increases the computational cost. To overcome this issue, we propose a local semantic feature aggregation-based transformer (LSFAT) architecture which allows transformers to represent long-range dependencies of multi-scale features more efficiently. We introduce the concept of the homogeneous region into the transformer by considering a pixel aggregation strategy and further propose neighborhood aggregation-based embedding (NAE) and attention (NAA) modules, which are able to adaptively form multi-scale features and capture locally spatial semantics among them in a hierarchical transformer architecture. A reusable classification token is included together with the feature tokens in the attention calculation. In the last stage, a fully connected layer is employed to perform classification on the reusable token after transformer encoding. We verify the effectiveness of the NAE and NAA modules compared with the traditional ViT through extensive experiments. Our results demonstrate the excellent classification performance of the proposed method in comparison with other state-of-the-art approaches on several public HSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悲凉的艳发布了新的文献求助10
刚刚
2秒前
Lei发布了新的文献求助10
9秒前
Hello应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
在水一方应助tingsHHH采纳,获得10
17秒前
yrm完成签到,获得积分10
18秒前
18秒前
sunshine完成签到 ,获得积分10
19秒前
19秒前
珊珊完成签到,获得积分20
20秒前
林允儿发布了新的文献求助10
21秒前
汉堡包应助小白采纳,获得10
21秒前
zhou发布了新的文献求助10
23秒前
wang发布了新的文献求助50
25秒前
扶摇完成签到 ,获得积分10
25秒前
浅尝离白应助不想学习鸭采纳,获得30
28秒前
29秒前
汉堡包应助洪焕良采纳,获得10
31秒前
烟花应助笑点低的火龙果采纳,获得10
33秒前
35秒前
萧羊青完成签到,获得积分10
38秒前
上官若男应助zz采纳,获得10
38秒前
39秒前
shinysparrow应助Hosea采纳,获得70
40秒前
Augustines完成签到,获得积分10
43秒前
44秒前
洪焕良发布了新的文献求助10
45秒前
48秒前
49秒前
50秒前
53秒前
53秒前
54秒前
54秒前
洪焕良完成签到,获得积分10
54秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146435
求助须知:如何正确求助?哪些是违规求助? 2797816
关于积分的说明 7825895
捐赠科研通 2454175
什么是DOI,文献DOI怎么找? 1306214
科研通“疑难数据库(出版商)”最低求助积分说明 627666
版权声明 601503