亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Local Semantic Feature Aggregation-Based Transformer for Hyperspectral Image Classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 嵌入 变压器 像素 高光谱成像 特征学习 上下文图像分类 图像(数学) 量子力学 物理 电压
作者
Bing Tu,Xiaolong Liao,Qianming Li,Yishu Peng,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2022.3201145
摘要

Hyperspectral images (HSIs) contain abundant information in the spatial and spectral domains, allowing for a precise characterization of categories of materials. Convolutional neural networks (CNNs) have achieved great success in HSI classification, owing to their excellent ability in local contextual modeling. However, CNNs suffer from fixed filter weights and deep convolutional layers, which lead to a limited receptive field and high computational burden. The recent Vision Transformer (ViT) models long-range dependencies with a self-attention mechanism and has been an alternative backbone to the CNNs traditionally used in HSI classification. However, such transformer-based architectures designate all input pixels of the receptive field as feature tokens in terms of feature embedding and self-attention, which inevitably limits the ability for learning multi-scale features and increases the computational cost. To overcome this issue, we propose a local semantic feature aggregation-based transformer (LSFAT) architecture which allows transformers to represent long-range dependencies of multi-scale features more efficiently. We introduce the concept of the homogeneous region into the transformer by considering a pixel aggregation strategy and further propose neighborhood aggregation-based embedding (NAE) and attention (NAA) modules, which are able to adaptively form multi-scale features and capture locally spatial semantics among them in a hierarchical transformer architecture. A reusable classification token is included together with the feature tokens in the attention calculation. In the last stage, a fully connected layer is employed to perform classification on the reusable token after transformer encoding. We verify the effectiveness of the NAE and NAA modules compared with the traditional ViT through extensive experiments. Our results demonstrate the excellent classification performance of the proposed method in comparison with other state-of-the-art approaches on several public HSIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chuhaner完成签到,获得积分20
4秒前
Nextf1sh发布了新的文献求助10
5秒前
陶醉的难破完成签到,获得积分10
6秒前
隐形曼青应助Nextf1sh采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
24秒前
27秒前
李爱国应助文章多多采纳,获得10
28秒前
Benhnhk21完成签到,获得积分10
28秒前
1746435297发布了新的文献求助10
34秒前
macleod发布了新的文献求助10
1分钟前
小灰灰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
circlez19完成签到 ,获得积分10
1分钟前
千早爱音完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
1746435297完成签到,获得积分20
2分钟前
1746435297关注了科研通微信公众号
2分钟前
李爱国应助汤露豪采纳,获得10
2分钟前
xtheuv发布了新的文献求助10
2分钟前
2分钟前
汤露豪发布了新的文献求助10
2分钟前
xtheuv完成签到,获得积分20
3分钟前
深情安青应助1746435297采纳,获得10
3分钟前
kx完成签到 ,获得积分10
3分钟前
sunfield2014完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639622
求助须知:如何正确求助?哪些是违规求助? 4749297
关于积分的说明 15006893
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563858
邀请新用户注册赠送积分活动 1522782
关于科研通互助平台的介绍 1482480