An Underground Pipeline Mapping Method Based on Fusion of Multisource Data

作者
Xiren Zhou,Qiuju Chen,Bingbing Jiang,Huanhuan Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2022.3200153
摘要

There is a need to map underground pipelines due to non-available existing pipeline maps caused by poor management of statutory records and insufficient updating of documentation whenever pipeline construction or rerouting occurs. By fusing multi-source data, a novel method to map underground pipelines is proposed in this paper. Statutory records of the underground pipelines are converted to the initial pipeline map. Pipeline information obtained from manhole covers and remote sensing technologies are normalized into the pipeline data set composed of detected points. The Probabilistic Pipeline Mapping Model (PPMM) is then proposed to map the buried pipelines from the conducted pipeline data set, with or without statutory pipeline records. In this model, each detected point is classified into the specific pipeline that most likely generates the data of this point, and detected points generated from the same pipeline are fitted to revise the pipelines’ locations and directions. The above classification and fitting operations are performed iteratively, and PPMM would output the pipeline map with the highest probability. Experimental studies on real-world datasets are conducted and analyzed, and the obtained results demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助小庄采纳,获得10
刚刚
1秒前
侦察兵发布了新的文献求助10
1秒前
司徒元瑶完成签到 ,获得积分10
1秒前
梓榆发布了新的文献求助10
1秒前
1秒前
sweetbearm应助通~采纳,获得10
1秒前
斯文败类应助成就映秋采纳,获得10
2秒前
123456完成签到,获得积分10
2秒前
2秒前
moonlin完成签到 ,获得积分10
2秒前
3秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
思源应助蟹黄堡不打折采纳,获得10
5秒前
Lily应助科研通管家采纳,获得40
5秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
zzzq应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
皮皮完成签到 ,获得积分10
5秒前
sallltyyy发布了新的文献求助10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
QPP完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
喜悦中道应助科研通管家采纳,获得10
5秒前
wzxxxx发布了新的文献求助10
6秒前
冬瓜炖排骨完成签到,获得积分10
6秒前
6666发布了新的文献求助10
6秒前
BB发布了新的文献求助10
7秒前
冷静雅青完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794