Physics‐Aware Machine Learning and Adversarial Attack in Complex‐Valued Reconfigurable Diffractive All‐Optical Neural Network

计算机科学 人工神经网络 感知器 人工智能 计算机工程 软件 卷积神经网络 光学计算 软件部署 深度学习 计算机硬件 稳健性(进化) 物理 光学 程序设计语言 基因 操作系统 生物化学 化学
作者
Ruiyang Chen,Yingjie Li,Ming Lou,Jichao Fan,Yingheng Tang,Berardi Sensale‐Rodriguez,Cunxi Yu,Weilu Gao
出处
期刊:Laser & Photonics Reviews [Wiley]
卷期号:16 (12) 被引量:9
标识
DOI:10.1002/lpor.202200348
摘要

Abstract Diffractive optical neural networks have shown promising advantages over electronic circuits for accelerating modern machine learning (ML) algorithms. However, it is challenging to achieve fully programmable all‐optical implementation and rapid hardware deployment. Here, a large‐scale, cost‐effective, complex‐valued, and reconfigurable diffractive all‐optical neural networks system in the visible range is demonstrated based on cascaded transmissive twisted nematic liquid crystal spatial light modulators. The employment of categorical reparameterization technique creates a physics‐aware training framework for the fast and accurate deployment of computer‐trained models onto optical hardware. Such a full stack of hardware and software enables not only the experimental demonstration of classifying handwritten digits in standard datasets, but also theoretical analysis and experimental verification of physics‐aware adversarial attacks onto the system, which are generated from a complex‐valued gradient‐based algorithm. The detailed adversarial robustness comparison with conventional multiple layer perceptrons and convolutional neural networks features a distinct statistical adversarial property in diffractive optical neural networks. The developed full stack of software and hardware provides new opportunities of employing diffractive optics in a variety of ML tasks and in the research on optical adversarial ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助Linda采纳,获得10
刚刚
刚刚
1秒前
共享精神应助温婉的醉蝶采纳,获得10
1秒前
Bink完成签到,获得积分10
1秒前
CodeCraft应助流心小汤包采纳,获得10
2秒前
西扬完成签到 ,获得积分10
2秒前
2秒前
DijiaXu应助小陈采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
轻松的旭尧关注了科研通微信公众号
2秒前
科研小姑娘完成签到,获得积分10
2秒前
田様应助carcar采纳,获得10
2秒前
3秒前
mufulee完成签到,获得积分10
3秒前
小蚂蚁完成签到,获得积分10
3秒前
你的风筝应助凶狠的惜海采纳,获得20
3秒前
可爱的函函应助lyl采纳,获得10
3秒前
3秒前
白好闻发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
4秒前
888886kn发布了新的文献求助10
4秒前
CyrusSo524发布了新的文献求助210
4秒前
5秒前
5秒前
ljc发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
DDD发布了新的文献求助10
6秒前
6秒前
WN发布了新的文献求助10
6秒前
Amy完成签到 ,获得积分10
7秒前
欣慰白山应助Fiee采纳,获得10
7秒前
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《电路与模拟电子电路PSpice仿真分析及设计》 500
《电子电路原理》 500
《数字电子技术》 500
半导体器件物理 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011633
求助须知:如何正确求助?哪些是违规求助? 3551418
关于积分的说明 11308628
捐赠科研通 3285620
什么是DOI,文献DOI怎么找? 1811122
邀请新用户注册赠送积分活动 886781
科研通“疑难数据库(出版商)”最低求助积分说明 811653