Data-Driven Guided Attention for Analysis of Physiological Waveforms With Deep Learning

计算机科学 人工智能 动态时间归整 均方误差 概化理论 深度学习 杠杆(统计) 机器学习 波形 特征(语言学) 模式识别(心理学) 特征工程 数据挖掘 统计 数学 哲学 电信 雷达 语言学
作者
Jonathan Martinez,Zhale Nowroozilarki,Roozbeh Jafari,Bobak J. Mortazavi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5482-5493 被引量:4
标识
DOI:10.1109/jbhi.2022.3199199
摘要

Estimating physiological parameters - such as blood pressure (BP) - from raw sensor data captured by noninvasive, wearable devices rely on either burdensome manual feature extraction designed by domain experts to identify key waveform characteristics and phases, or deep learning (DL) models that require extensive data collection. We propose the Data-Driven Guided Attention (DDGA) framework to optimize DL models to learn features supported by the underlying physiology and physics of the captured waveforms, with minimal expert annotation. With only a single template waveform cardiac cycle and its labelled fiducial points, we leverage dynamic time warping (DTW) to annotate all other training samples. DL models are trained to first identify them before estimating BP to inform them which regions of the input represent key phases of the cardiac cycle, yet we still grant the flexibility for DL to determine the optimal feature set from them. In this study, we evaluate DDGA's improvements to a BP estimation task for three prominent DL-based architectures with two datasets: 1) the MIMIC-III waveform dataset with ample training data and 2) a bio-impedance (Bio-Z) dataset with less than abundant training data. Experiments show that DDGA improves personalized BP estimation models by an average 8.14% in root mean square error (RMSE) when there is an imbalanced distribution of target values in a training set and improves model generalizability by an average 4.92% in RMSE when testing estimation of BP value ranges not previously seen in training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺帮主完成签到,获得积分10
刚刚
zys2001mezy应助深情的雁露采纳,获得50
刚刚
Summer发布了新的文献求助10
刚刚
优雅的WAN发布了新的文献求助30
刚刚
刚刚
图灵桑发布了新的文献求助10
1秒前
今后应助龚幻梦采纳,获得10
1秒前
Lin完成签到,获得积分20
1秒前
杨一发布了新的文献求助10
1秒前
3131879775发布了新的文献求助10
1秒前
1秒前
灵巧代柔发布了新的文献求助10
2秒前
会飞的yu发布了新的文献求助20
2秒前
3秒前
3秒前
3秒前
3秒前
闻道者发布了新的文献求助10
4秒前
4秒前
觉皇发布了新的文献求助10
4秒前
李健的小迷弟应助Ronee采纳,获得30
5秒前
LO7pM2应助能干的吐司采纳,获得10
5秒前
lxlcx发布了新的文献求助10
5秒前
隐形曼青应助QQ采纳,获得30
5秒前
5秒前
不吃香菜发布了新的文献求助10
5秒前
不万能青年完成签到,获得积分10
6秒前
6秒前
菠萝炒饭应助地啦啦啦采纳,获得10
6秒前
脑洞疼应助图灵桑采纳,获得10
7秒前
hjysyg发布了新的文献求助10
7秒前
8秒前
十七完成签到 ,获得积分10
8秒前
8秒前
完美世界应助万惜文采纳,获得10
8秒前
luqong完成签到,获得积分0
9秒前
9秒前
Harold发布了新的文献求助10
9秒前
9秒前
通~发布了新的文献求助10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154