污染物
钴
降级(电信)
锌
铜
环境化学
碳纤维
总有机碳
化学
金属有机骨架
无机化学
材料科学
吸附
有机化学
计算机科学
复合材料
复合数
电信
作者
Yangzhuo He,Ziwei Wang,Han Wang,Eydhah Almatrafi,Hong Qin,Danlian Huang,Yuan Zhu,Chengyun Zhou,Quyang Tian,Piao Xu,Guangming Zeng
标识
DOI:10.1016/j.jhazmat.2022.129811
摘要
Developing efficient heterogeneous catalysts for peroxymonosulfate (PMS) activation is extraordinarily desirable in water purification. In this work, a well-defined core-shell copper-cobalt-zinc oxides consisting of Cu 0.92 Co 2.08 O 4 and ZnCo 2 O 4 wrapped by carbon (CuCoZnO/C) was fabricated by a simple one-step calcination using metal-organic frameworks (MOFs) as templates. The as-obtained catalysts were fully characterized and utilized to activate PMS for phenol degradation, and almost 100% degradation efficiency could be achieved within 10 min. The distinct hollow structure allowed the high instantaneous concentration of organic pollutant in a microenvironment, thus providing a driving force to improve the reaction rate. Owing to the mesoporous and adsorptive carbon as well as active Cu 0.92 Co 2.08 O 4 shell, most SO 4 •− radical was confined to catalyst surface immediately once produced rather than release into the bulk solution, making the enriched reactant molecules contact active sites more easily. Further investigation found that both surface-bound SO 4 •− and 1 O 2 were dominantly participated in the catalytic process, achieving an ultrafast pollutant degradation. This work offered a new design for multiple complex oxides from MOFs and extended the development of Co-based heterogenous catalyst in PMS activation for the environmental remediation. • Core-shell ZnCo 2 O 4 @Cu 0.92 Co 2.08 O 4 /C was obtained by dual-MOF-templated method. • The catalysts achieved an ultrafast degradation for organic pollutants by SR-AOPs. • Confinement effect and synergy in active metals caused superior catalytic activity. • Surface-bound SO 4 •− and 1 O 2 were dominantly participated in the catalytic process.
科研通智能强力驱动
Strongly Powered by AbleSci AI