In real-time embedded computing, time-predictability and performance are required simultaneously by memory transactions. However, with increasingly more elements being integrated into hardware, memory interconnects become a critical stumbling block to satisfying timing correctness, due to lack of hardware and scheduling scalability. In this paper, we propose a new hierarchically distributed memory interconnect, BlueScale, managing memory transactions using identical Scale Elements, which ensures hardware scalability. The Scale Element introduces two nested priority queues, achieving iterative compositional scheduling for memory transactions, guaranteeing transaction tasks' scheduling schedulability. Associated with the new architecture, a theoretical model is established to improve BlueScale's real-time performance.