Prediction and visualization analysis of drilling energy consumption based on mechanism and data hybrid drive

机制(生物学) 可视化 能源消耗 钻探 消费(社会学) 计算机科学 数据可视化 能量(信号处理) 工程类 数据挖掘 机械工程 统计 数学 电气工程 社会科学 哲学 认识论 社会学
作者
Kangping Gao,Xinxin Xu,Shengjie Jiao
出处
期刊:Energy [Elsevier BV]
卷期号:261: 125227-125227 被引量:7
标识
DOI:10.1016/j.energy.2022.125227
摘要

To obtain an accurate and reliable energy consumption (EC) prediction model, and to quantify the relationship between drilling power, EC, and energy efficiency. An EC prediction model and multi-angle visualization analysis method driven by mechanism and data are proposed. Firstly, the power and energy models of each stage of the drilling rig are established through detailed power flow theory. Additionally, based on the deviation between the actual EC results and the theoretical mechanism model calculation results, a least squares support vector machine (LSSVM) data compensation model is established, and the LSSVM model parameters are optimized by the improved whale optimization algorithm; after that, multi-angle visualization analysis of energy parameters was performed by drilling power histogram, energy efficiency ring diagram, energy sequence diagram, and energy bubble diagram. Finally, the experiment of curb drilling shows that the prediction error of the hybrid drive model is 2.44%. Compared with the prediction results of the mechanism model and the data-driven model, the average prediction error is reduced by 0.76% and 2.25%, which verifies the high efficiency of the hybrid-driven model. Also, through the multi-angle visualization analysis of energy parameters, the drilling energy saving is 2127.4kJ, and the energy efficiency is improved by 26.71%. • A mechanism analysis and data-driven integrated drilling energy consumption prediction model is established. • The IWOA algorithm was used to optimize the LSSVM parameters. • A multi-angle visual analysis of the energy at each stage of drilling is carried out. • The relationship between drilling power, load energy consumption, and load energy efficiency is explored. • The influence of drilling rig working parameters on drilling energy parameters is studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穿堂风完成签到,获得积分10
1秒前
2秒前
缥缈忻完成签到,获得积分10
2秒前
3秒前
ASH发布了新的文献求助10
6秒前
852应助如意代秋采纳,获得10
7秒前
祝愿发布了新的文献求助10
7秒前
10秒前
10秒前
daoyi完成签到,获得积分10
11秒前
11秒前
12秒前
15秒前
flow完成签到,获得积分10
16秒前
123gg发布了新的文献求助10
16秒前
zong2807完成签到,获得积分10
17秒前
阿菜完成签到,获得积分10
17秒前
泥嚎发布了新的文献求助10
18秒前
20秒前
tuanheqi应助研友_LXjjOZ采纳,获得150
20秒前
酷波er应助北北采纳,获得10
23秒前
田様应助CHRIS采纳,获得10
23秒前
小焦儿完成签到,获得积分10
24秒前
万能图书馆应助坚定白风采纳,获得10
24秒前
丘比特应助小任性采纳,获得10
24秒前
所所应助liziqi采纳,获得10
25秒前
雪白的夏山完成签到,获得积分10
32秒前
失眠的广山完成签到 ,获得积分10
32秒前
37秒前
38秒前
星辰大海应助大喵采纳,获得10
40秒前
41秒前
42秒前
42秒前
keyantong发布了新的文献求助10
42秒前
薛妖怪发布了新的文献求助10
42秒前
小任性发布了新的文献求助10
43秒前
南瓜饼完成签到,获得积分10
44秒前
漂亮白枫发布了新的文献求助10
45秒前
zhxq发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190