Prediction and visualization analysis of drilling energy consumption based on mechanism and data hybrid drive

机制(生物学) 可视化 能源消耗 钻探 消费(社会学) 计算机科学 数据可视化 能量(信号处理) 工程类 数据挖掘 机械工程 统计 社会科学 认识论 电气工程 哲学 社会学 数学
作者
Kangping Gao,Xinxin Xu,Shengjie Jiao
出处
期刊:Energy [Elsevier BV]
卷期号:261: 125227-125227 被引量:7
标识
DOI:10.1016/j.energy.2022.125227
摘要

To obtain an accurate and reliable energy consumption (EC) prediction model, and to quantify the relationship between drilling power, EC, and energy efficiency. An EC prediction model and multi-angle visualization analysis method driven by mechanism and data are proposed. Firstly, the power and energy models of each stage of the drilling rig are established through detailed power flow theory. Additionally, based on the deviation between the actual EC results and the theoretical mechanism model calculation results, a least squares support vector machine (LSSVM) data compensation model is established, and the LSSVM model parameters are optimized by the improved whale optimization algorithm; after that, multi-angle visualization analysis of energy parameters was performed by drilling power histogram, energy efficiency ring diagram, energy sequence diagram, and energy bubble diagram. Finally, the experiment of curb drilling shows that the prediction error of the hybrid drive model is 2.44%. Compared with the prediction results of the mechanism model and the data-driven model, the average prediction error is reduced by 0.76% and 2.25%, which verifies the high efficiency of the hybrid-driven model. Also, through the multi-angle visualization analysis of energy parameters, the drilling energy saving is 2127.4kJ, and the energy efficiency is improved by 26.71%. • A mechanism analysis and data-driven integrated drilling energy consumption prediction model is established. • The IWOA algorithm was used to optimize the LSSVM parameters. • A multi-angle visual analysis of the energy at each stage of drilling is carried out. • The relationship between drilling power, load energy consumption, and load energy efficiency is explored. • The influence of drilling rig working parameters on drilling energy parameters is studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪不斜完成签到,获得积分10
刚刚
刚刚
xinxiangshicheng完成签到 ,获得积分10
1秒前
愤怒的小鸟完成签到,获得积分10
1秒前
MY完成签到,获得积分10
1秒前
顾矜应助lenetivy采纳,获得10
2秒前
自觉寒梦发布了新的文献求助10
2秒前
美好斓发布了新的文献求助10
2秒前
郑文涛完成签到,获得积分10
3秒前
JamesPei应助专注的白柏采纳,获得10
4秒前
YHY发布了新的文献求助10
6秒前
好吃发布了新的文献求助10
6秒前
拾光完成签到,获得积分10
7秒前
long完成签到 ,获得积分10
7秒前
天天向上发布了新的文献求助10
8秒前
6260完成签到,获得积分10
8秒前
pcr163应助linhanwenzhou采纳,获得50
9秒前
9秒前
酷酷元风完成签到,获得积分10
10秒前
11秒前
天才幸运鱼完成签到,获得积分10
11秒前
12秒前
12秒前
粥游天下完成签到,获得积分10
13秒前
jcc完成签到,获得积分10
13秒前
哈哈哈哈完成签到,获得积分10
13秒前
lighthouse完成签到,获得积分10
14秒前
平凡中的限量版完成签到,获得积分10
14秒前
大伟完成签到,获得积分10
14秒前
long关注了科研通微信公众号
15秒前
懵懂的毛豆完成签到,获得积分10
15秒前
zzcherished发布了新的文献求助10
15秒前
zyq发布了新的文献求助10
15秒前
我是老大应助哦哦哦采纳,获得10
16秒前
YHY完成签到,获得积分10
16秒前
16秒前
天天呼的海角完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029