渡线
安萨茨
随机游动
指数
扩散
自由度(物理和化学)
二次增长
统计物理学
菲克扩散定律
维数之咒
高斯分布
物理
反常扩散
蒙特卡罗方法
数学
数学分析
量子力学
统计
哲学
人工智能
知识管理
语言学
计算机科学
创新扩散
作者
Alexander S. Balankin,Miguel Ángel Martínez Cruz,Eduardo Reyes de Luna
标识
DOI:10.1142/s0217984922500415
摘要
In this work, we study the effects of geometric confinement on random walks and diffusion processes in systems of reduced dimensionality. Extensive Monte Carlo simulations of Gaussian random walks were performed on rectangular strips of infinite length. A special emphasis is made on the crossover from two- to one-dimensional diffusion in the Fickian regime. We found that the crossover behavior is controlled by the ratio of the strip width to the standard deviation of the walker step length distribution. Specifically, the characteristic time of crossover behavior scales quadratically with this ratio. Furthermore, the time dependence of the number of effective spatial degrees of freedom of the random walker on the strip is found to obey an ansatz characterized by the universal power-law exponent. This allows us to formulate the diffusion equation with the time dependent number of effective spatial degrees of freedom in the quasi-one-dimensional system.
科研通智能强力驱动
Strongly Powered by AbleSci AI