非阻塞I/O
材料科学
过电位
塔菲尔方程
制氢
复合数
电流密度
无定形固体
电解
分解水
电解水
碱性水电解
化学工程
纳米技术
物理化学
催化作用
电化学
电解质
电极
复合材料
光催化
结晶学
化学
工程类
物理
生物化学
量子力学
作者
Junye Zhang,Jiayu Liang,Bingbao Mei,Kun Lan,Lianhai Zu,Tiancong Zhao,Yuzhu Ma,Yan Chen,Zirui Lv,Yi Yang,Chuanghui Yu,Zhe Xu,Bao Yu Xia,Wei Li,Qinghong Yuan,Dongyuan Zhao
标识
DOI:10.1002/aenm.202200001
摘要
Abstract High current density hydrogen evolution reaction (HER) in alkaline water electrolysis plays crucial role in renewable and sustainable energy systems, while posing a great challenge to the highly‐efficient electrocatalysts. Here, the synthesis of Ni/NiO@MoO 3− x composite nanoarrays is reported by a moderate reduction strategy, combining Ni/NiO nanoparticles (≈20 nm) with amorphous MoO 3− x nanoarrays. The Ni/NiO@MoO 3− x composite nanoarrays possess enhanced hydrophilicity, optimize reaction energy barriers, accelerate reactant diffusion/bubble detachment, and therefore display an ultrahigh alkaline HER activity with a low η 10 overpotential of 7 mV as well as Tafel slope of 34 mV dec −1 . More significantly, the Ni/NiO@MoO 3− x nanoarrays only demand low overpotentials of 75 and 112 mV to deliver 100 and 200 mA cm −2 hydrogen production current, and can steadily work at 100 mA cm −2 for 40 h, which is more efficient and stable than the Pt/C catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI