Effects of investor sentiment on stock volatility: new evidences from multi-source data in China’s green stock markets

波动性(金融) 库存(枪支) 金融经济学 股票市场 经济 计量经济学 业务 货币经济学 机械工程 古生物学 工程类 生物
作者
Yang Gao,Chengjie Zhao,Bianxia Sun,Wandi Zhao
出处
期刊:Financial Innovation [Springer Nature]
卷期号:8 (1) 被引量:21
标识
DOI:10.1186/s40854-022-00381-2
摘要

Abstract The effect of investor sentiment on stock volatility is a highly attractive research question in both the academic field and the real financial industry. With the proposal of China's "dual carbon" target, green stocks have gradually become an essential branch of Chinese stock markets. Focusing on 106 stocks from the new energy, environmental protection, and carbon–neutral sectors, we construct two investor sentiment proxies using Internet text and stock trading data, respectively. The Internet sentiment is based on posts from Eastmoney Guba, and the trading sentiment comes from a variety of trading indicators. In addition, we divide the realized volatility into continuous and jump parts, and then investigate the effects of investor sentiment on different types of volatilities. Our empirical findings show that both sentiment indices impose significant positive impacts on realized, continuous, and jump volatilities, where trading sentiment is the main factor. We further explore the mediating effect of information asymmetry, measured by the volume-synchronized probability of informed trading (VPIN), on the path of investor sentiment affecting stock volatility. It is evidenced that investor sentiments are positively correlated with the VPIN, and they can affect volatilities through the VPIN. We then divide the total sample around the coronavirus disease 2019 (COVID-19) pandemic. The empirical results reveal that the market volatility after the COVID-19 pandemic is more susceptible to investor sentiments, especially to Internet sentiment. Our study is of great significance for maintaining the stability of green stock markets and reducing market volatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎寻冬完成签到,获得积分10
刚刚
青柠完成签到,获得积分10
1秒前
专心搞学术完成签到,获得积分10
1秒前
阳光的冬天完成签到,获得积分10
1秒前
寻桃完成签到,获得积分0
1秒前
wind发布了新的文献求助10
2秒前
2秒前
冰糖葫芦娃完成签到,获得积分10
2秒前
3秒前
上官若男应助matt采纳,获得10
3秒前
lichunlei发布了新的文献求助30
4秒前
烟雨醉巷完成签到 ,获得积分10
4秒前
xwq完成签到,获得积分10
4秒前
科研挂完成签到,获得积分10
4秒前
Catalysis123发布了新的文献求助10
5秒前
周围完成签到,获得积分10
5秒前
受伤访波完成签到,获得积分10
5秒前
5秒前
r2333完成签到,获得积分10
5秒前
5秒前
今后应助小星云采纳,获得10
6秒前
若朴祭司发布了新的文献求助10
6秒前
76542cu发布了新的文献求助10
6秒前
七七完成签到,获得积分10
7秒前
8秒前
乐园鸟完成签到,获得积分10
8秒前
尘默应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
cym完成签到 ,获得积分10
8秒前
sfef完成签到,获得积分10
8秒前
雷霆康康完成签到,获得积分10
8秒前
r2333发布了新的文献求助10
9秒前
欧阳惜筠完成签到,获得积分10
9秒前
顺心冰之完成签到,获得积分10
10秒前
房LY完成签到,获得积分10
10秒前
10秒前
479_完成签到 ,获得积分10
10秒前
懵懂的南风完成签到,获得积分10
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249002
求助须知:如何正确求助?哪些是违规求助? 2892380
关于积分的说明 8271185
捐赠科研通 2560658
什么是DOI,文献DOI怎么找? 1389175
科研通“疑难数据库(出版商)”最低求助积分说明 651006
邀请新用户注册赠送积分活动 627869