Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision

人工智能 果园 油茶 聚类分析 最小边界框 计算机科学 计算机视觉 跳跃式监视 模式识别(心理学) 数学 图像(数学) 园艺 生物
作者
Yunchao Tang,Hao Zhou,Hongjun Wang,Yunqi Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118573-118573 被引量:145
标识
DOI:10.1016/j.eswa.2022.118573
摘要

In the complex environment of an orchard, changes in illumination, leaf occlusion, and fruit overlap make it challenging for mobile picking robots to detect and locate oil-seed camellia fruit. To address this problem, YOLO-Oleifera was developed as a fruit detection model method based on a YOLOv4-tiny model, To obtain clustering results appropriate to the size of the Camellia oleifera fruit, the k-means++ clustering algorithm was used instead of the k-means clustering algorithm used by the YOLOv4-tiny model to determine bounding box priors. Two convolutional kernels of 1 × 1 and 3 × 3 were respectively added after the second and third CSPBlock modules of the YOLOv4-tiny model. This model allows the learning of Camellia oleifera fruit feature information and reduces overall computational complexity. Compared with the classic stereo matching method based on binocular camera images, this method innovatively used the bounding box generated by the YOLO-Oleifera model to extract the region of interest of the fruit, and then adaptively performs stereo matching according to the generation mechanism of the bounding box. This allows the determination of disparity and facilitates the subsequent use of the triangulation principle to determine the picking position of the fruit. An ablation experiment demonstrated the effective improvement of the YOLOv4-tiny model. Camellia oleifera fruit images obtained under sunlight and shading conditions were used to test the YOLO-Oleifera model, and the model robustly detected the fruit under different illumination conditions. Occluded Camellia oleifera fruit decreased precision and recall due to the loss of semantic information. Comparison of this model with deep learning models YOLOv5-s,YOLOv3-tiny, and YOLOv4-tiny, the YOLO-Oleifera model achieved the highest AP of 0.9207 with the smallest data weight of 29 MB. The YOLO-Oleifera model took an average of 31 ms to detect each fruit image, fast enough to meet the demand for real-time detection. The algorithm exhibited high positioning stability and robust function despite changes in illumination. The results of this study can provide a technical reference for the robust detection and positioning of Camellia oleifera fruit by a mobile picking robot in a complex orchard environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乌龟完成签到,获得积分10
1秒前
弱水三千完成签到,获得积分10
1秒前
bella完成签到,获得积分10
2秒前
2秒前
昊天月完成签到,获得积分10
2秒前
海盗完成签到,获得积分10
2秒前
Lucas应助叶白山采纳,获得20
2秒前
2秒前
Hello应助医只兔采纳,获得10
2秒前
晓伟完成签到,获得积分10
4秒前
许xx完成签到 ,获得积分10
5秒前
七七完成签到,获得积分10
5秒前
现代的烤鸡完成签到,获得积分10
5秒前
小二郎应助sunzyu采纳,获得10
6秒前
我像风一样自由完成签到 ,获得积分10
6秒前
xiaoqi666完成签到 ,获得积分10
7秒前
木目完成签到,获得积分10
8秒前
王小红发布了新的文献求助30
8秒前
8秒前
he完成签到,获得积分10
9秒前
吴中雪完成签到,获得积分10
9秒前
坚定龙猫完成签到,获得积分10
10秒前
三木完成签到,获得积分10
10秒前
Ode完成签到,获得积分10
11秒前
Jason完成签到,获得积分10
11秒前
研友_VZG7GZ应助动听乐珍采纳,获得10
12秒前
一叶扁舟完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
HEIKU举报七里香求助涉嫌违规
14秒前
liwanhong完成签到,获得积分10
14秒前
远看寒山完成签到,获得积分10
14秒前
14秒前
荣浩宇完成签到,获得积分10
15秒前
15秒前
向日葵完成签到,获得积分10
15秒前
咩咩羊完成签到,获得积分10
15秒前
17秒前
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257305
求助须知:如何正确求助?哪些是违规求助? 2899227
关于积分的说明 8304469
捐赠科研通 2568509
什么是DOI,文献DOI怎么找? 1395145
科研通“疑难数据库(出版商)”最低求助积分说明 652952
邀请新用户注册赠送积分活动 630703