Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision

人工智能 果园 油茶 聚类分析 最小边界框 计算机科学 计算机视觉 跳跃式监视 模式识别(心理学) 数学 图像(数学) 园艺 生物
作者
Yunchao Tang,Hao Zhou,Hongjun Wang,Yunqi Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118573-118573 被引量:221
标识
DOI:10.1016/j.eswa.2022.118573
摘要

In the complex environment of an orchard, changes in illumination, leaf occlusion, and fruit overlap make it challenging for mobile picking robots to detect and locate oil-seed camellia fruit. To address this problem, YOLO-Oleifera was developed as a fruit detection model method based on a YOLOv4-tiny model, To obtain clustering results appropriate to the size of the Camellia oleifera fruit, the k-means++ clustering algorithm was used instead of the k-means clustering algorithm used by the YOLOv4-tiny model to determine bounding box priors. Two convolutional kernels of 1 × 1 and 3 × 3 were respectively added after the second and third CSPBlock modules of the YOLOv4-tiny model. This model allows the learning of Camellia oleifera fruit feature information and reduces overall computational complexity. Compared with the classic stereo matching method based on binocular camera images, this method innovatively used the bounding box generated by the YOLO-Oleifera model to extract the region of interest of the fruit, and then adaptively performs stereo matching according to the generation mechanism of the bounding box. This allows the determination of disparity and facilitates the subsequent use of the triangulation principle to determine the picking position of the fruit. An ablation experiment demonstrated the effective improvement of the YOLOv4-tiny model. Camellia oleifera fruit images obtained under sunlight and shading conditions were used to test the YOLO-Oleifera model, and the model robustly detected the fruit under different illumination conditions. Occluded Camellia oleifera fruit decreased precision and recall due to the loss of semantic information. Comparison of this model with deep learning models YOLOv5-s,YOLOv3-tiny, and YOLOv4-tiny, the YOLO-Oleifera model achieved the highest AP of 0.9207 with the smallest data weight of 29 MB. The YOLO-Oleifera model took an average of 31 ms to detect each fruit image, fast enough to meet the demand for real-time detection. The algorithm exhibited high positioning stability and robust function despite changes in illumination. The results of this study can provide a technical reference for the robust detection and positioning of Camellia oleifera fruit by a mobile picking robot in a complex orchard environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助xiaoxiao采纳,获得10
1秒前
1秒前
科研通AI6应助zzz采纳,获得30
2秒前
Zsx完成签到,获得积分10
2秒前
2秒前
3秒前
Saisaki完成签到,获得积分10
3秒前
Bourne完成签到,获得积分10
3秒前
小萝卜头完成签到,获得积分10
3秒前
积极向上的银杏完成签到,获得积分10
4秒前
4秒前
4秒前
李健的小迷弟应助初秋采纳,获得10
4秒前
4秒前
5秒前
5秒前
浅海111完成签到,获得积分10
5秒前
syy发布了新的文献求助30
5秒前
foceman发布了新的文献求助10
5秒前
疯狂的沛岚完成签到,获得积分10
5秒前
6秒前
6秒前
秦醉薇完成签到,获得积分10
6秒前
6秒前
淡然乐儿完成签到 ,获得积分10
6秒前
6秒前
清澈发布了新的文献求助30
7秒前
7秒前
7秒前
哑牛发布了新的文献求助30
8秒前
8秒前
8秒前
斯文败类应助yao chen采纳,获得10
9秒前
秦醉薇发布了新的文献求助30
9秒前
9秒前
pup_zillion完成签到,获得积分20
9秒前
chen发布了新的文献求助30
9秒前
9秒前
传奇3应助刘可采纳,获得10
9秒前
顺子发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762