Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision

人工智能 果园 油茶 聚类分析 最小边界框 计算机科学 计算机视觉 跳跃式监视 模式识别(心理学) 数学 图像(数学) 园艺 生物
作者
Yunchao Tang,Hao Zhou,Hongjun Wang,Yunqi Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:211: 118573-118573 被引量:164
标识
DOI:10.1016/j.eswa.2022.118573
摘要

In the complex environment of an orchard, changes in illumination, leaf occlusion, and fruit overlap make it challenging for mobile picking robots to detect and locate oil-seed camellia fruit. To address this problem, YOLO-Oleifera was developed as a fruit detection model method based on a YOLOv4-tiny model, To obtain clustering results appropriate to the size of the Camellia oleifera fruit, the k-means++ clustering algorithm was used instead of the k-means clustering algorithm used by the YOLOv4-tiny model to determine bounding box priors. Two convolutional kernels of 1 × 1 and 3 × 3 were respectively added after the second and third CSPBlock modules of the YOLOv4-tiny model. This model allows the learning of Camellia oleifera fruit feature information and reduces overall computational complexity. Compared with the classic stereo matching method based on binocular camera images, this method innovatively used the bounding box generated by the YOLO-Oleifera model to extract the region of interest of the fruit, and then adaptively performs stereo matching according to the generation mechanism of the bounding box. This allows the determination of disparity and facilitates the subsequent use of the triangulation principle to determine the picking position of the fruit. An ablation experiment demonstrated the effective improvement of the YOLOv4-tiny model. Camellia oleifera fruit images obtained under sunlight and shading conditions were used to test the YOLO-Oleifera model, and the model robustly detected the fruit under different illumination conditions. Occluded Camellia oleifera fruit decreased precision and recall due to the loss of semantic information. Comparison of this model with deep learning models YOLOv5-s,YOLOv3-tiny, and YOLOv4-tiny, the YOLO-Oleifera model achieved the highest AP of 0.9207 with the smallest data weight of 29 MB. The YOLO-Oleifera model took an average of 31 ms to detect each fruit image, fast enough to meet the demand for real-time detection. The algorithm exhibited high positioning stability and robust function despite changes in illumination. The results of this study can provide a technical reference for the robust detection and positioning of Camellia oleifera fruit by a mobile picking robot in a complex orchard environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香菜大王完成签到 ,获得积分10
1秒前
Jeremy637完成签到 ,获得积分10
2秒前
无辜凝天完成签到,获得积分10
2秒前
亚高山暗针叶林完成签到 ,获得积分10
2秒前
顾矜应助卞卞采纳,获得10
3秒前
3秒前
3秒前
看文献完成签到,获得积分0
4秒前
a1313发布了新的文献求助10
6秒前
乾坤侠客LW完成签到,获得积分10
7秒前
Airport完成签到 ,获得积分10
8秒前
jiaaniu完成签到 ,获得积分10
8秒前
满唐完成签到 ,获得积分10
9秒前
清圆527完成签到,获得积分10
10秒前
善学以致用应助哇哇哇哇采纳,获得10
11秒前
务实雁梅完成签到,获得积分10
14秒前
争气完成签到 ,获得积分10
14秒前
大雪完成签到 ,获得积分10
16秒前
阿宝完成签到,获得积分10
17秒前
123完成签到 ,获得积分10
17秒前
32429606完成签到 ,获得积分10
17秒前
四叶草完成签到 ,获得积分10
17秒前
骑着蜗牛追导弹完成签到 ,获得积分10
19秒前
21秒前
斯文败类应助hehe采纳,获得10
21秒前
新洸完成签到 ,获得积分10
24秒前
Mr.Left完成签到,获得积分10
25秒前
Yihahahaevd完成签到 ,获得积分10
25秒前
哇哇哇哇发布了新的文献求助10
26秒前
lzc完成签到 ,获得积分10
26秒前
封闭货车完成签到 ,获得积分10
27秒前
平常日记本完成签到 ,获得积分10
28秒前
小八统治世界完成签到 ,获得积分10
33秒前
a1313完成签到,获得积分10
33秒前
35秒前
为你等候完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
tclouds完成签到 ,获得积分10
38秒前
gxzsdf完成签到 ,获得积分10
38秒前
hehe发布了新的文献求助10
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008786
求助须知:如何正确求助?哪些是违规求助? 3548464
关于积分的说明 11298867
捐赠科研通 3283080
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220