Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision

人工智能 果园 油茶 聚类分析 最小边界框 计算机科学 计算机视觉 跳跃式监视 模式识别(心理学) 数学 图像(数学) 园艺 生物
作者
Yunchao Tang,Hao Zhou,Hongjun Wang,Yunqi Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118573-118573 被引量:164
标识
DOI:10.1016/j.eswa.2022.118573
摘要

In the complex environment of an orchard, changes in illumination, leaf occlusion, and fruit overlap make it challenging for mobile picking robots to detect and locate oil-seed camellia fruit. To address this problem, YOLO-Oleifera was developed as a fruit detection model method based on a YOLOv4-tiny model, To obtain clustering results appropriate to the size of the Camellia oleifera fruit, the k-means++ clustering algorithm was used instead of the k-means clustering algorithm used by the YOLOv4-tiny model to determine bounding box priors. Two convolutional kernels of 1 × 1 and 3 × 3 were respectively added after the second and third CSPBlock modules of the YOLOv4-tiny model. This model allows the learning of Camellia oleifera fruit feature information and reduces overall computational complexity. Compared with the classic stereo matching method based on binocular camera images, this method innovatively used the bounding box generated by the YOLO-Oleifera model to extract the region of interest of the fruit, and then adaptively performs stereo matching according to the generation mechanism of the bounding box. This allows the determination of disparity and facilitates the subsequent use of the triangulation principle to determine the picking position of the fruit. An ablation experiment demonstrated the effective improvement of the YOLOv4-tiny model. Camellia oleifera fruit images obtained under sunlight and shading conditions were used to test the YOLO-Oleifera model, and the model robustly detected the fruit under different illumination conditions. Occluded Camellia oleifera fruit decreased precision and recall due to the loss of semantic information. Comparison of this model with deep learning models YOLOv5-s,YOLOv3-tiny, and YOLOv4-tiny, the YOLO-Oleifera model achieved the highest AP of 0.9207 with the smallest data weight of 29 MB. The YOLO-Oleifera model took an average of 31 ms to detect each fruit image, fast enough to meet the demand for real-time detection. The algorithm exhibited high positioning stability and robust function despite changes in illumination. The results of this study can provide a technical reference for the robust detection and positioning of Camellia oleifera fruit by a mobile picking robot in a complex orchard environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shire应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
RC_Wang应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
匹诺曹发布了新的文献求助10
1秒前
唐画完成签到 ,获得积分10
1秒前
1秒前
1秒前
淡淡采白关注了科研通微信公众号
2秒前
tY完成签到,获得积分20
2秒前
傲娇的凡旋应助卢健辉采纳,获得10
3秒前
CodeCraft应助calbee采纳,获得10
3秒前
5秒前
5秒前
sw98318完成签到,获得积分10
6秒前
impala完成签到,获得积分10
6秒前
6秒前
欣喜访旋发布了新的文献求助10
6秒前
朱江涛完成签到 ,获得积分10
7秒前
角鸮完成签到,获得积分10
7秒前
zly完成签到 ,获得积分10
8秒前
雨霧雲完成签到,获得积分10
8秒前
qnqqq完成签到 ,获得积分10
9秒前
健壮的涑发布了新的文献求助10
9秒前
10秒前
10秒前
秋山伊夫完成签到,获得积分10
10秒前
入门的橙橙完成签到 ,获得积分10
10秒前
BONBON发布了新的文献求助10
11秒前
13秒前
TOM完成签到,获得积分10
13秒前
隐形曼青应助欣喜访旋采纳,获得10
14秒前
852应助Millie采纳,获得10
14秒前
龍Ryu完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808