Frontline employee expectations on working with physical robots in retailing

机器人 工作设计 服务(商务) 业务 工作表现 工作分析 实证研究 营销 工作态度 公共关系 知识管理 心理学 计算机科学 工作满意度 社会心理学 政治学 人工智能 哲学 认识论
作者
Kim Willems,Nanouk Verhulst,Laurens De Gauquier,Malaika Brengman
出处
期刊:Journal of Service Management 卷期号:34 (3): 467-492 被引量:11
标识
DOI:10.1108/josm-09-2020-0340
摘要

Purpose Service robots have increasingly been utilized in retail settings, yet empirical research on how frontline employees (FLEs) might deal with this new reality remains scarce. This mixed-methods study aims to examine how FLEs expect physical service robots to impact job characteristics and affect their job engagement and well-being. Design/methodology/approach First, explorative interviews (Study 1; N = 32) were conducted to investigate how FLEs currently experience job characteristics and how they believe robots might impact these job characteristics and job outcomes. Next, a survey (Study 2; N = 165) examined the relationship between job characteristics that retail FLEs expect to be impacted by robots and their own well-being and job engagement. Findings While the overall expectations for working with robots are mixed, retail FLEs expect that working with robots can alleviate certain job demands, but robots cannot help to replenish their job resources. On the contrary, most retail FLEs expect the pains and gains associated with robots in the workspace to cancel each other out, leaving their job engagement and well-being unaffected. However, of the FLEs that do anticipate that robots might have some impact on their well-being and job engagement, the majority expect negative effects. Originality/value This study is unique in addressing the trade-off between expected benefits and costs inherent to job demands-resources (JD-R) theory while incorporating a transformative service research (TSR) lens. By integrating different streams of research to study retail FLEs' expectations about working with robots and focusing on robots' impact on job engagement and well-being, this study offers new insights for theory and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔毛毛发布了新的文献求助10
刚刚
666完成签到,获得积分10
刚刚
星辰大海应助杨文志采纳,获得10
1秒前
李爱国应助cc采纳,获得10
1秒前
2秒前
Gxx完成签到,获得积分10
2秒前
2秒前
薰硝壤应助星川采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得20
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
可乐应助卡卡卡采纳,获得10
5秒前
6秒前
6秒前
SaSa发布了新的文献求助10
6秒前
7秒前
李爱国应助兔毛毛采纳,获得10
7秒前
7秒前
8秒前
8秒前
lai发布了新的文献求助30
9秒前
Jasmine发布了新的文献求助10
9秒前
PPP发布了新的文献求助10
10秒前
李健应助纯真雁菱采纳,获得10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905