Identification of Potential Biomarkers Associated with Dilated Cardiomyopathy by Weighted Gene Coexpression Network Analysis

基因 计算生物学 扩张型心肌病 生物信息学 微阵列分析技术 基因表达 生物 髓系白血病 生物信息学 医学 遗传学 心力衰竭 癌症研究 内科学
作者
Qixin Guo,Qiang Qu,Lu‐Yang Wang,Shengen Liao,Xu Zhu,Anning Du,Qingqing Zhu,Iokfai Cheang,Rongrong Gao,Xinli Li
出处
期刊:Frontiers in bioscience [Bioscience Research Institute Pte. Ltd.]
卷期号:27 (8): 246-246 被引量:3
标识
DOI:10.31083/j.fbl2708246
摘要

Dilated cardiomyopathy (DCM) is one of the main causes of systolic heart failure and frequently has a genetic component. The molecular mechanisms underlying the onset and progression of DCM remain unclear. This study aimed to identify novel diagnostic biomarkers to aid in the treatment and diagnosis of DCM.The Gene Expression Omnibus (GEO) database was explored to extract two microarray datasets, GSE120895 and GSE17800, which were subsequently merged into a single cohort. Differentially expressed genes were analyzed in the DCM and control groups, followed by weighted gene coexpression network analysis to determine the core modules. Core nodes were identified by gene significance (GS) and module membership (MM) values, and four hub genes were predicted by the Lasso regression model. The expression levels and diagnostic values of the four hub genes were further validated in the datasets GSE19303. Finally, potential therapeutic drugs and upstream molecules regulating genes were identified.The turquoise module is the core module of DCM. Four hub genes were identified: GYPC (glycophorin C), MLF2 (myeloid leukemia factor 2), COPS7A (COP9 signalosome subunit 7A) and ARL2 (ADP ribosylation factor like GTPase 2). Subsequently, Hub genes showed significant differences in expression in both the dataset and the validation model by real-time quantitative PCR (qPCR). Four potential modulators and seven chemicals were also identified. Finally, molecular docking simulations of the gene-encoded proteins with small-molecule drugs were successfully performed.The results suggested that ARL2, MLF2, GYPC and COPS7A could be potential gene biomarkers for DCM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
斯茵完成签到,获得积分10
刚刚
刚刚
清爽的含桃完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
星辰大海应助聪明的破茧采纳,获得10
2秒前
2秒前
2秒前
小乖发布了新的文献求助10
2秒前
彭于晏应助77nic采纳,获得30
3秒前
单福克斯完成签到,获得积分20
3秒前
123发布了新的文献求助10
3秒前
Sponge完成签到,获得积分10
4秒前
科研通AI2S应助lecturer采纳,获得10
5秒前
zhj发布了新的文献求助30
6秒前
未来可期发布了新的文献求助10
7秒前
清漪完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
PhDL1发布了新的文献求助10
8秒前
w6完成签到,获得积分10
9秒前
10秒前
4114完成签到,获得积分10
11秒前
哈哈哈完成签到,获得积分20
11秒前
勤劳火车完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
搜集达人应助农艳宁采纳,获得80
13秒前
13秒前
13秒前
香米发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
英姑应助扣子采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761878
求助须知:如何正确求助?哪些是违规求助? 5532710
关于积分的说明 15401214
捐赠科研通 4898111
什么是DOI,文献DOI怎么找? 2634724
邀请新用户注册赠送积分活动 1582875
关于科研通互助平台的介绍 1538103