A hybrid reduced-order model combing deep learning for unsteady flow

动态模态分解 跨音速 稳健性(进化) 物理 残余物 流量(数学) 涡流 计算流体力学 湍流 机械 雷诺数 计算机科学 应用数学 算法 数学 空气动力学 生物化学 化学 基因
作者
Xuyi Jia,Chunna Li,Wen Ji,Chunlin Gong
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (9) 被引量:5
标识
DOI:10.1063/5.0104848
摘要

Reduced-order models such as dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) have been extensively utilized to model unsteady flow. Although the major flow patterns can be captured by DMD and POD, due to the linear assumption, the modeling accuracy is low for complex and strongly nonlinear flow structures such as shock wave and vortex. To improve the accuracy and robustness of predicting unsteady flow, this work proposes a novel modeling method based on a hybrid reduced-order model. Since the flow can be regarded as a fusion of the main flow and the residual flow from a modeling perspective, the hybrid reduced-order model is constructed by DMD and POD, which are, respectively, used to obtain different flow properties. First, DMD is applied in describing the main flow, which contains the dominant modes determining most properties of the flow. Then, POD combining the long short-term memory is conceived to model the residual flow that the DMD cannot capture, to further enhance the modeling accuracy. The proposed method is validated by modeling two unsteady flows, which are the flow past a two-dimensional circular cylinder at Reynolds number 100 and the forced oscillation of an airfoil at transonic speed. The results indicate that the proposed method with proper modeling efficiency gains better accuracy and robustness than the existing methods. In particular, this approach has better forecasting accuracy of shock wave and vortex.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
败北发布了新的文献求助10
3秒前
早日毕业发布了新的文献求助10
3秒前
刘博龙完成签到,获得积分20
4秒前
5秒前
6秒前
科目三应助Wsixg采纳,获得10
6秒前
科研通AI5应助Tine采纳,获得10
7秒前
光锥完成签到,获得积分10
10秒前
Ava应助liupangzi采纳,获得10
10秒前
于生有你完成签到,获得积分10
11秒前
11秒前
12秒前
大模型应助展开的黑花球采纳,获得10
12秒前
12秒前
上官若男应助俊逸丝袜采纳,获得40
13秒前
ddd发布了新的文献求助10
15秒前
鹤唳完成签到,获得积分10
15秒前
安徒发布了新的文献求助10
17秒前
传奇3应助HY采纳,获得10
17秒前
dengxu发布了新的文献求助10
18秒前
脑洞疼应助123456采纳,获得10
18秒前
快乐花卷完成签到,获得积分10
18秒前
18秒前
村上种树完成签到,获得积分10
18秒前
乔乔兔应助Tine采纳,获得10
19秒前
白了个白完成签到 ,获得积分10
19秒前
20秒前
mao305发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
风趣的灵枫完成签到 ,获得积分10
23秒前
爱静静应助徐如之采纳,获得60
24秒前
科研通AI5应助加快步伐采纳,获得10
26秒前
Akim应助蒸馏水采纳,获得10
27秒前
123456发布了新的文献求助10
27秒前
香蕉觅云应助周钦采纳,获得10
30秒前
科研通AI2S应助文良颜丑采纳,获得10
32秒前
caiiiii发布了新的文献求助10
32秒前
皮卡丘完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481