Electronic nose signals-based deep learning models to realize high-precision monitoring of simultaneous saccharification and fermentation of cassava

电子鼻 人工智能 发酵 深度学习 计算机科学 人工神经网络 机器学习 校准 均方误差 模式识别(心理学) 数学 化学 统计 食品科学
作者
Bo Wang,Jihong Deng,Hui Jiang,Quansheng Chen
出处
期刊:Microchemical Journal [Elsevier]
卷期号:182: 107929-107929 被引量:15
标识
DOI:10.1016/j.microc.2022.107929
摘要

This study innovatively proposes a high-precision monitoring method for key parameters in the process of ethanol production from simultaneous saccharification and fermentation (SSF) by electronic nose technology combined with recurrent neural network (RNN). A PEN3 electronic nose system was employed to acquire the odor information of the fermented samples, and four deep learning algorithms based on the RNN architecture were employed to design reasonable network structures to realize the deep learning of the electronic nose signal features and model calibration. The results obtained showed that each deep learning model based on the RNN architecture has good generalization performance for the determination of cassava SSF process parameters. Among them, the bidirectional long short-term memory network (BiLSTM) model has the best monitoring effect on ethanol content, with root mean square error of prediction (RMSEP) of 3.7 mg·mL−1 and coefficient of predictive determination (RP2) of 0.98 and the relative percent deviation (RPD) of 8.1. The bidirectional gated recurrent unit (BiGRU) model had the best monitoring effect on glucose content, and its RMSEP, RP2 and RPD were 2.9 mg·mL−1, 0.99 and 9.1, respectively. The overall results reveal that deep learning algorithms have promising application prospects in the feature mining and model calibration of electronic nose signals, which provides an effective analysis tool for in-situ monitoring of electronic nose technology in modern industrial fermentation processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热霸发布了新的文献求助10
刚刚
姜姜完成签到,获得积分10
刚刚
刚刚
mmmaosheng完成签到,获得积分10
刚刚
1秒前
拼搏的映易完成签到,获得积分10
1秒前
1秒前
1秒前
霍明轩完成签到 ,获得积分10
3秒前
夏侯初发布了新的文献求助10
3秒前
3秒前
4秒前
科研ray发布了新的文献求助10
4秒前
热心饼干发布了新的文献求助10
4秒前
青阳发布了新的文献求助10
5秒前
5秒前
5秒前
LDH完成签到,获得积分10
5秒前
6秒前
6秒前
AM发布了新的文献求助10
6秒前
6秒前
徐志豪完成签到,获得积分20
7秒前
7秒前
7秒前
vonfenson发布了新的文献求助10
8秒前
Ava应助野山菌采纳,获得10
8秒前
默默善愁发布了新的文献求助10
8秒前
8秒前
耍酷乌发布了新的文献求助10
8秒前
8秒前
天天快乐应助小冯爱睡觉采纳,获得10
9秒前
9秒前
9秒前
9秒前
lk完成签到,获得积分20
9秒前
10秒前
zhang-leo发布了新的文献求助10
10秒前
ildzg发布了新的文献求助10
11秒前
nemohuang发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906