已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electronic nose signals-based deep learning models to realize high-precision monitoring of simultaneous saccharification and fermentation of cassava

电子鼻 人工智能 发酵 深度学习 计算机科学 人工神经网络 机器学习 校准 均方误差 模式识别(心理学) 数学 化学 统计 食品科学
作者
Bo Wang,Jihong Deng,Hui Jiang,Quansheng Chen
出处
期刊:Microchemical Journal [Elsevier]
卷期号:182: 107929-107929 被引量:9
标识
DOI:10.1016/j.microc.2022.107929
摘要

This study innovatively proposes a high-precision monitoring method for key parameters in the process of ethanol production from simultaneous saccharification and fermentation (SSF) by electronic nose technology combined with recurrent neural network (RNN). A PEN3 electronic nose system was employed to acquire the odor information of the fermented samples, and four deep learning algorithms based on the RNN architecture were employed to design reasonable network structures to realize the deep learning of the electronic nose signal features and model calibration. The results obtained showed that each deep learning model based on the RNN architecture has good generalization performance for the determination of cassava SSF process parameters. Among them, the bidirectional long short-term memory network (BiLSTM) model has the best monitoring effect on ethanol content, with root mean square error of prediction (RMSEP) of 3.7 mg·mL−1 and coefficient of predictive determination (RP2) of 0.98 and the relative percent deviation (RPD) of 8.1. The bidirectional gated recurrent unit (BiGRU) model had the best monitoring effect on glucose content, and its RMSEP, RP2 and RPD were 2.9 mg·mL−1, 0.99 and 9.1, respectively. The overall results reveal that deep learning algorithms have promising application prospects in the feature mining and model calibration of electronic nose signals, which provides an effective analysis tool for in-situ monitoring of electronic nose technology in modern industrial fermentation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的铸海完成签到 ,获得积分10
1秒前
xiaoxia发布了新的文献求助10
2秒前
2秒前
顾矜应助龙骑士25采纳,获得10
3秒前
邹邹邹发布了新的文献求助10
4秒前
beta发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
coco发布了新的文献求助10
8秒前
Q123ba叭完成签到,获得积分10
8秒前
bkagyin应助qwerqwer采纳,获得10
9秒前
10秒前
木子青山发布了新的文献求助20
12秒前
Jasper应助干净的芮采纳,获得10
13秒前
Liu完成签到 ,获得积分10
13秒前
Gcole完成签到,获得积分10
14秒前
xiaoxia完成签到,获得积分10
14秒前
Ciil完成签到,获得积分10
14秒前
小面包狗完成签到,获得积分10
15秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
mafukairi应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
完美的天空应助小面包狗采纳,获得10
18秒前
饱满的镜子应助受伤月饼采纳,获得20
21秒前
Smith.w应助小东子采纳,获得10
23秒前
24秒前
24秒前
25秒前
酷波er应助树叶有专攻采纳,获得10
26秒前
汪哈七发布了新的文献求助10
26秒前
Owen应助hwen1998采纳,获得10
26秒前
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229535
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8197956
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374419
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749