Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment

颈内动脉 人工智能 分割 深度学习 接收机工作特性 颈总动脉 超声波 分离(统计) 冲程(发动机) 计算机科学 模式识别(心理学) 医学 颈动脉 放射科 机器学习 内科学 机械工程 工程类
作者
Pankaj K. Jain,Neeraj Sharma,Mannudeep K. Kalra,Amer M. Johri,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 106017-106017 被引量:37
标识
DOI:10.1016/j.compbiomed.2022.106017
摘要

Stroke risk assessment using deep learning (DL) requires automated, accurate, and real-time risk assessment while ensuring compact model size. Previous DL paradigms suffered from challenges like memory size, low speed, and complex in nature lacking multi-ethnic, and multi-institution databases. This research segments and measures the area of the plaque far wall of the common carotid (CCA) and internal carotid arteries (ICA) in B-mode ultrasound using four types of solo, namely, UNet, UNet+, UNet++, and UNet+++, and three types of hybrids, namely, Inception-UNet, Fractal-UNet, and Squeeze-UNet, architectures. These seven models are benchmarked against autoencoder-based solution. Three kinds of databases, namely, CCA, ICA, and combined CCA + ICA were implemented using K5 cross-validation protocol. This was validated using unseen Hong Kong data. The CCA database consisted of 379 Japanese images from low-to medium-risk, while the ICA database consisted of 970 Japanese images taken from 97 medium-to high-risk patients. Using the coefficient of correlation (CC) metric between automated measured area and manually delineated area, seven deep learning solo and hybrid models for CCA yielded 0.96, 0.96, 0.98, 0.95, 0.96, and 0.96 respectively, whereas ICA yielded 0.99, 0.99, 0.98, 0.99, 0.98, 0.98, and 0.98 respectively. Area under the receiver operating characteristics curve values for CCA images was 0.97, 0.969, 0.974, 0.969, 0.962, 0.969, and 0.960 respectively, whereas for ICA images were 0.99, 0.989, 0.988, 0.989, 0.986, 0.989, and 0.988, respectively (p < 0.001). The percentage improvement in offline memory size, training time and training parameters for Squeeze-UNet compared to UNet++ were 569%, 122.46%, and 569%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃应助科研通管家采纳,获得30
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得30
刚刚
orixero应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
刚刚
烟花应助幸福蓝血采纳,获得10
刚刚
1秒前
llly完成签到,获得积分10
2秒前
求学狗完成签到 ,获得积分10
2秒前
QY完成签到,获得积分10
2秒前
善学以致用应助biglixiang采纳,获得10
2秒前
优雅的亦玉完成签到,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
ltutui7完成签到,获得积分10
3秒前
龙牙发布了新的文献求助10
4秒前
JSzzZ发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
凡雁完成签到,获得积分10
5秒前
5秒前
雷雷发布了新的文献求助10
5秒前
peipei发布了新的文献求助10
5秒前
Lucas应助王川采纳,获得10
6秒前
从容的安双完成签到,获得积分10
6秒前
素笺生花完成签到,获得积分10
7秒前
7秒前
kiwi完成签到 ,获得积分10
8秒前
TCB完成签到,获得积分10
8秒前
弥里完成签到,获得积分10
8秒前
coffeecat完成签到 ,获得积分10
8秒前
嘻嘻发布了新的文献求助10
8秒前
9秒前
xiaofeiyan完成签到 ,获得积分10
9秒前
9秒前
Owen应助优雅的亦玉采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258269
求助须知:如何正确求助?哪些是违规求助? 4420207
关于积分的说明 13759573
捐赠科研通 4293737
什么是DOI,文献DOI怎么找? 2356114
邀请新用户注册赠送积分活动 1352458
关于科研通互助平台的介绍 1313270