亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment

颈内动脉 人工智能 分割 深度学习 接收机工作特性 颈总动脉 超声波 分离(统计) 冲程(发动机) 计算机科学 模式识别(心理学) 医学 颈动脉 放射科 机器学习 内科学 机械工程 工程类
作者
Pankaj K. Jain,Neeraj Sharma,Mannudeep K. Kalra,Amer M. Johri,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 106017-106017 被引量:32
标识
DOI:10.1016/j.compbiomed.2022.106017
摘要

Stroke risk assessment using deep learning (DL) requires automated, accurate, and real-time risk assessment while ensuring compact model size. Previous DL paradigms suffered from challenges like memory size, low speed, and complex in nature lacking multi-ethnic, and multi-institution databases. This research segments and measures the area of the plaque far wall of the common carotid (CCA) and internal carotid arteries (ICA) in B-mode ultrasound using four types of solo, namely, UNet, UNet+, UNet++, and UNet+++, and three types of hybrids, namely, Inception-UNet, Fractal-UNet, and Squeeze-UNet, architectures. These seven models are benchmarked against autoencoder-based solution. Three kinds of databases, namely, CCA, ICA, and combined CCA + ICA were implemented using K5 cross-validation protocol. This was validated using unseen Hong Kong data. The CCA database consisted of 379 Japanese images from low-to medium-risk, while the ICA database consisted of 970 Japanese images taken from 97 medium-to high-risk patients. Using the coefficient of correlation (CC) metric between automated measured area and manually delineated area, seven deep learning solo and hybrid models for CCA yielded 0.96, 0.96, 0.98, 0.95, 0.96, and 0.96 respectively, whereas ICA yielded 0.99, 0.99, 0.98, 0.99, 0.98, 0.98, and 0.98 respectively. Area under the receiver operating characteristics curve values for CCA images was 0.97, 0.969, 0.974, 0.969, 0.962, 0.969, and 0.960 respectively, whereas for ICA images were 0.99, 0.989, 0.988, 0.989, 0.986, 0.989, and 0.988, respectively (p < 0.001). The percentage improvement in offline memory size, training time and training parameters for Squeeze-UNet compared to UNet++ were 569%, 122.46%, and 569%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zed发布了新的文献求助10
1秒前
2秒前
7秒前
10秒前
苏震坤发布了新的文献求助10
16秒前
23秒前
24秒前
容若发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
32秒前
情怀应助容若采纳,获得10
45秒前
活力的妙菡完成签到,获得积分20
46秒前
1分钟前
舒服的觅云完成签到,获得积分10
1分钟前
苏震坤发布了新的文献求助10
1分钟前
计划完成签到,获得积分10
1分钟前
1分钟前
葛力完成签到,获得积分20
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI6应助葛力采纳,获得10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
一只小锦鲤完成签到 ,获得积分10
2分钟前
Licyan完成签到,获得积分10
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助爱听歌笑寒采纳,获得10
3分钟前
jimmy_bytheway完成签到,获得积分0
4分钟前
4分钟前
4分钟前
容若发布了新的文献求助10
4分钟前
4分钟前
重庆森林发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127