Observational Learning in Networks of Competition: How structures of attention among rivals can bring interpretive advantage

竞争对手分析 竞赛(生物学) 机会主义 共谋 结束语(心理学) 产业组织 业务 营销 经济 微观经济学 市场经济 生态学 生物
作者
Matteo Prato,David Stark
出处
期刊:Organization Studies [SAGE Publishing]
卷期号:44 (2): 253-276 被引量:11
标识
DOI:10.1177/01708406221118672
摘要

Much of social network analysis has focused on learning in communication networks among collaborators in which actors can make direct inquiries to seek clarification about alters’ behavior or views. But such inquiries are typically not possible among rivals. Learning among rivals occurs primarily in observational networks in which actors must make inferences of the logics guiding their competitors’ behavior in markets. What promotes interpretive advantage in these networks of observation? We combine multimarket competition theory and structural hole theory to highlight the benefits of multiple exposure to disconnected competitors. In network-analytic terms we suggest that competitors’ interpretive advantage lies in non-redundant dyadic closure, especially when dealing with uncertain market niches. Dyadic closure, measuring ego’s exposure to her direct competitors in multiple markets, increases the ability to interpret competitors’ observed behavior. Redundancy, measuring the extent to which ego’s competitors are exposed to each other, reduces the diversity of views to which ego is exposed and hence the capacity to cope with uncertainty. We test our hypothesis by analyzing the network of competition created by securities analysts and the stocks they cover. We find that estimates issued by an analyst with multiple exposures to disconnected competitors are more accurate when confronted by more challenging, high risk, high reward, volatile stocks. Shifting the focus from direct social ties to the cognitive ties that link actors based on the objects, problems, or issues to which they pay attention, we develop a new approach to network analysis. Observation networks, we argue, operate neither as pipes nor as prisms but can be better conceived as scopes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不会飞的超人完成签到,获得积分20
刚刚
李健应助yatou5651采纳,获得10
刚刚
刚刚
从容追命完成签到,获得积分20
刚刚
刚刚
刚刚
传奇3应助Wang采纳,获得200
1秒前
1秒前
小胡完成签到,获得积分10
1秒前
晚霞不晚完成签到,获得积分10
2秒前
mobula完成签到,获得积分20
2秒前
于生有你发布了新的文献求助10
2秒前
null驳回了user应助
2秒前
好运连连完成签到,获得积分10
3秒前
3秒前
zjq发布了新的文献求助10
3秒前
Owen应助叶文轩采纳,获得10
3秒前
自然的代亦完成签到,获得积分10
3秒前
4秒前
4秒前
小胡发布了新的文献求助10
4秒前
4秒前
Cc发布了新的文献求助10
4秒前
5秒前
从容追命发布了新的文献求助30
5秒前
淡定发布了新的文献求助10
5秒前
李健应助justin采纳,获得10
6秒前
zero_two完成签到,获得积分10
6秒前
6秒前
逆时针完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
热心子轩完成签到,获得积分10
9秒前
Y奥完成签到,获得积分10
9秒前
XHH1994发布了新的文献求助10
9秒前
齐小妮发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646