Significantly enhanced superplasticity of TiBw/near-α Ti composite: Microstructure tailoring and deformation mechanisms

超塑性 微观结构 材料科学 复合数 变形(气象学) 复合材料
作者
Rui Zhang,Shuai Wang,Xin Chen,Qi An,Lujun Huang,Lin Geng,Fei Yang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:853: 143772-143772 被引量:11
标识
DOI:10.1016/j.msea.2022.143772
摘要

Titanium matrix composites(TMCs) have shown great potential for weight reduction in aerospace applications. However, hard ceramic reinforcements make the superplastic forming of TMCs hard to be achieved. In the present work, the microstructure of TiBw/near-α Ti composite was manipulated to achieve better deformability. Two different preprocessing routes were designed to obtain composites of equiaxed microstructure with the grain size of ∼3 μm, and bimodal microstructure with the grain size of ∼8 μm. Hot tensile test was carried out for the fabricated composites at 700 °C–800 °C and strain rates of 0.003 s −1 – 0.0003 s −1 . The results showed that the deformability of the TiBw/near-α Ti composites was improved significantly, with a maximum elongation of 348% for the composite with equiaxed microstructure, and 161% for the composite with bimodal microstructure. The deformation was determined to be dominated by dislocation movement under temperatures below 800 °C and grain boundary sliding (GBS) dominated at 800 °C. α/β lath in bimodal microstructure was observed to hinder GBS while prompting dynamic recrystallization (DRX), which was consistence with the higher activation energy of the composite with bimodal microstructure (391 kJ/mol) compared to that of the composite with equiaxed microstructure (310 kJ/mol). Compared to reports in literatures, the deformation temperature of composites prepared in the present work was 50 °C lower than that fabricated by other methods, attributed to the tailored fine microstructure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
6秒前
yeahway发布了新的文献求助10
6秒前
科研通AI5应助LY采纳,获得10
7秒前
8秒前
8秒前
9秒前
万幸鹿发布了新的文献求助10
10秒前
李爱国应助谨慎的夏采纳,获得10
10秒前
脑洞疼应助ke采纳,获得10
10秒前
11秒前
大胆安柏发布了新的文献求助10
12秒前
kunny完成签到 ,获得积分10
13秒前
13秒前
两面性完成签到,获得积分10
14秒前
科研通AI2S应助林一采纳,获得10
15秒前
Dolphin发布了新的文献求助10
15秒前
maxinghrr完成签到,获得积分0
16秒前
科研通AI5应助和道一文字采纳,获得10
16秒前
陈陈发布了新的文献求助10
17秒前
研友_Raven完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
差劲先生完成签到,获得积分10
21秒前
22秒前
明理小土豆完成签到,获得积分10
23秒前
和道一文字完成签到,获得积分10
23秒前
25秒前
26秒前
ryeong发布了新的文献求助10
26秒前
谨慎的夏发布了新的文献求助10
27秒前
save发布了新的文献求助10
28秒前
YYJ发布了新的文献求助10
30秒前
健壮的弼完成签到,获得积分10
32秒前
32秒前
33秒前
Orange应助复杂的宛采纳,获得10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734558
求助须知:如何正确求助?哪些是违规求助? 3278480
关于积分的说明 10009777
捐赠科研通 2995112
什么是DOI,文献DOI怎么找? 1643222
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196