Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma

医学 列线图 逻辑回归 肿瘤科 单变量 内科学 人工智能 机器学习 多元统计 计算机科学
作者
Aqiao Xu,Xiufeng Chu,Shengjian Zhang,Jing Zheng,Dabao Shi,Shasha Lv,Feng Li,Xiaobo Weng
出处
期刊:BMC Cancer [BioMed Central]
卷期号:22 (1) 被引量:10
标识
DOI:10.1186/s12885-022-09967-6
摘要

Abstract Background The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status. Methods We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set ( n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set ( n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 ( http://keyan.deepwise.com/ ), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA). Results 70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score ( p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation set. Moreover, calibration with the p -value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram. Conclusion Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pterion完成签到,获得积分10
刚刚
刚刚
2秒前
哒哒完成签到,获得积分10
4秒前
4秒前
循环发布了新的文献求助10
4秒前
幽默毛衣发布了新的文献求助10
7秒前
9秒前
循环完成签到,获得积分10
9秒前
leanne发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
开灯人和关灯人完成签到,获得积分20
12秒前
Stardust发布了新的文献求助10
13秒前
14秒前
FashionBoy应助爱笑晓曼采纳,获得10
15秒前
张雯思发布了新的文献求助10
16秒前
Priority完成签到,获得积分10
17秒前
光热效应发布了新的文献求助30
17秒前
风之星给风之星的求助进行了留言
17秒前
17秒前
ASH发布了新的文献求助10
17秒前
OxO完成签到,获得积分10
17秒前
18秒前
搜集达人应助快乐一江采纳,获得10
18秒前
19秒前
leanne完成签到,获得积分20
20秒前
幽默毛衣完成签到,获得积分10
21秒前
晨曦完成签到,获得积分10
21秒前
延文星发布了新的文献求助10
23秒前
张雯思发布了新的文献求助10
24秒前
24秒前
隐形曼青应助Stardust采纳,获得10
27秒前
27秒前
安详凡完成签到 ,获得积分10
31秒前
31秒前
听话的晓筠完成签到,获得积分10
31秒前
Heartlark发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174