已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma

医学 列线图 逻辑回归 肿瘤科 单变量 内科学 人工智能 机器学习 多元统计 计算机科学
作者
Aqiao Xu,Xiufeng Chu,Shengjian Zhang,Jing Zheng,Dabao Shi,Shasha Lv,Feng Li,Xiaobo Weng
出处
期刊:BMC Cancer [BioMed Central]
卷期号:22 (1) 被引量:10
标识
DOI:10.1186/s12885-022-09967-6
摘要

Abstract Background The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status. Methods We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set ( n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set ( n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 ( http://keyan.deepwise.com/ ), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA). Results 70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score ( p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation set. Moreover, calibration with the p -value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram. Conclusion Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Steven发布了新的文献求助10
2秒前
3秒前
凯文完成签到 ,获得积分10
6秒前
6秒前
凶狠的白竹完成签到,获得积分10
7秒前
瘦瘦的迎南完成签到 ,获得积分10
7秒前
8秒前
SUE发布了新的文献求助10
8秒前
fanyueyue应助niuma采纳,获得20
9秒前
10秒前
11秒前
13秒前
tangyuanliang发布了新的文献求助10
13秒前
hhllhh发布了新的文献求助10
16秒前
负责怀莲发布了新的文献求助10
17秒前
慕容半邪完成签到,获得积分10
18秒前
冰兰完成签到,获得积分10
19秒前
19秒前
Jing关注了科研通微信公众号
22秒前
乐糖完成签到 ,获得积分10
24秒前
斐嘿嘿发布了新的文献求助10
24秒前
小桐完成签到,获得积分10
25秒前
陌上花开完成签到,获得积分0
26秒前
yuan完成签到,获得积分10
29秒前
Arui发布了新的文献求助10
30秒前
wanci应助谨慎哈密瓜采纳,获得10
33秒前
33秒前
SciGPT应助平淡的乐曲采纳,获得30
34秒前
mw完成签到,获得积分10
35秒前
hyhyhyhy发布了新的文献求助10
38秒前
乐乐应助hhllhh采纳,获得10
38秒前
yumiao发布了新的文献求助10
39秒前
小橙子完成签到,获得积分10
40秒前
Mtx3098520564完成签到 ,获得积分10
40秒前
FF完成签到 ,获得积分10
41秒前
49秒前
陈军应助雪山飞鹰采纳,获得10
50秒前
sky发布了新的文献求助10
50秒前
谨慎哈密瓜完成签到,获得积分10
52秒前
54秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989868
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255752
捐赠科研通 3270793
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882215
科研通“疑难数据库(出版商)”最低求助积分说明 809208