Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma

医学 列线图 逻辑回归 肿瘤科 单变量 内科学 人工智能 机器学习 多元统计 计算机科学
作者
Aqiao Xu,Xiufeng Chu,Shengjian Zhang,Jing Zheng,Dabao Shi,Shasha Lv,Feng Li,Xiaobo Weng
出处
期刊:BMC Cancer [BioMed Central]
卷期号:22 (1) 被引量:10
标识
DOI:10.1186/s12885-022-09967-6
摘要

Abstract Background The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status. Methods We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set ( n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set ( n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 ( http://keyan.deepwise.com/ ), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA). Results 70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score ( p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation set. Moreover, calibration with the p -value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram. Conclusion Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都可以完成签到,获得积分10
刚刚
科研通AI5应助qfchen0716网易采纳,获得10
1秒前
JamesPei应助qfchen0716网易采纳,获得10
1秒前
丘比特应助qfchen0716网易采纳,获得10
1秒前
子川发布了新的文献求助10
1秒前
田様应助qfchen0716网易采纳,获得10
1秒前
科目三应助qfchen0716网易采纳,获得10
2秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
2秒前
rr发布了新的文献求助10
2秒前
科目三应助qfchen0716网易采纳,获得10
2秒前
Orange应助qfchen0716网易采纳,获得10
2秒前
FashionBoy应助qfchen0716网易采纳,获得10
2秒前
今后应助qfchen0716网易采纳,获得10
2秒前
汉堡包应助Rober采纳,获得10
2秒前
3秒前
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
张大旭77发布了新的文献求助10
6秒前
8秒前
科研通AI5应助感动苡采纳,获得10
9秒前
雪山大地完成签到,获得积分10
9秒前
Beton_X发布了新的文献求助40
10秒前
11秒前
11秒前
嘿嘿嘿发布了新的文献求助10
11秒前
11秒前
12秒前
小肥鑫发布了新的文献求助10
13秒前
14秒前
scoot完成签到 ,获得积分10
14秒前
wjx关闭了wjx文献求助
14秒前
14秒前
蛋挞完成签到,获得积分20
14秒前
hhh完成签到 ,获得积分10
16秒前
爱学习发布了新的文献求助10
16秒前
张张发布了新的文献求助10
16秒前
wangsai0532完成签到,获得积分10
17秒前
17秒前
SciGPT应助1111111111111111采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676