Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma

医学 列线图 逻辑回归 肿瘤科 单变量 内科学 人工智能 机器学习 多元统计 计算机科学
作者
Aqiao Xu,Xiufeng Chu,Shengjian Zhang,Jing Zheng,Dabao Shi,Shasha Lv,Feng Li,Xiaobo Weng
出处
期刊:BMC Cancer [BioMed Central]
卷期号:22 (1) 被引量:10
标识
DOI:10.1186/s12885-022-09967-6
摘要

Abstract Background The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status. Methods We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set ( n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set ( n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 ( http://keyan.deepwise.com/ ), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA). Results 70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score ( p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation set. Moreover, calibration with the p -value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram. Conclusion Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cora完成签到 ,获得积分10
5秒前
徐伟康完成签到 ,获得积分10
5秒前
Minicoper完成签到,获得积分10
16秒前
科研通AI5应助普鲁卡因采纳,获得10
16秒前
111完成签到 ,获得积分10
16秒前
奥特曼完成签到 ,获得积分10
16秒前
苏苏完成签到,获得积分10
17秒前
大橙子完成签到,获得积分10
17秒前
kelite完成签到 ,获得积分10
18秒前
火星上的雨柏完成签到 ,获得积分10
19秒前
JY完成签到,获得积分10
20秒前
知行合一完成签到 ,获得积分10
20秒前
23秒前
23秒前
笑林完成签到 ,获得积分10
24秒前
wwl完成签到,获得积分10
24秒前
娟娟完成签到 ,获得积分10
25秒前
Hollen完成签到 ,获得积分10
25秒前
janejane发布了新的文献求助10
26秒前
27秒前
32429606完成签到 ,获得积分10
27秒前
28秒前
普鲁卡因发布了新的文献求助10
30秒前
发个15分的完成签到 ,获得积分10
32秒前
32秒前
wellyou发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
37秒前
自由的鹏涛完成签到,获得积分20
40秒前
41秒前
在水一方应助Nayvue采纳,获得10
41秒前
44秒前
Ryan完成签到,获得积分10
45秒前
General完成签到 ,获得积分10
45秒前
谦让汝燕完成签到,获得积分10
47秒前
wellyou完成签到,获得积分10
48秒前
mint完成签到,获得积分10
50秒前
afli完成签到 ,获得积分0
53秒前
54秒前
Yy完成签到 ,获得积分10
57秒前
Nayvue发布了新的文献求助10
59秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022