已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma

医学 列线图 逻辑回归 肿瘤科 单变量 内科学 人工智能 机器学习 多元统计 计算机科学
作者
Aqiao Xu,Xiufeng Chu,Shengjian Zhang,Jing Zheng,Dabao Shi,Shasha Lv,Feng Li,Xiaobo Weng
出处
期刊:BMC Cancer [Springer Nature]
卷期号:22 (1) 被引量:10
标识
DOI:10.1186/s12885-022-09967-6
摘要

Abstract Background The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status. Methods We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set ( n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set ( n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 ( http://keyan.deepwise.com/ ), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA). Results 70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score ( p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation set. Moreover, calibration with the p -value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram. Conclusion Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAYING完成签到 ,获得积分10
1秒前
2秒前
3秒前
5秒前
6秒前
杜客发布了新的文献求助10
7秒前
Wujt完成签到 ,获得积分10
9秒前
Shelley发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
英俊枫完成签到,获得积分0
12秒前
百里一笑发布了新的文献求助10
13秒前
邮电部诗人完成签到,获得积分10
14秒前
健忘的晓小完成签到 ,获得积分10
15秒前
耶耶完成签到 ,获得积分10
15秒前
月见完成签到 ,获得积分10
17秒前
17秒前
舒心聪展完成签到,获得积分10
17秒前
SciGPT应助陈M雯采纳,获得10
19秒前
25秒前
25秒前
25秒前
26秒前
舒心聪展发布了新的文献求助10
27秒前
Murphy完成签到 ,获得积分10
28秒前
su完成签到 ,获得积分10
28秒前
Yu发布了新的文献求助10
29秒前
陈M雯发布了新的文献求助10
32秒前
时光完成签到 ,获得积分10
33秒前
李健的粉丝团团长应助Yu采纳,获得10
34秒前
月落无痕97完成签到 ,获得积分0
34秒前
科研通AI6.1应助skye采纳,获得10
35秒前
悄悄完成签到 ,获得积分10
36秒前
37秒前
魔幻安南完成签到 ,获得积分10
38秒前
38秒前
刘欣欢完成签到 ,获得积分10
39秒前
杜客发布了新的文献求助10
39秒前
40秒前
lht完成签到 ,获得积分10
40秒前
Ava应助土豆小狗勇敢飞采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763557
求助须知:如何正确求助?哪些是违规求助? 5541880
关于积分的说明 15404946
捐赠科研通 4899261
什么是DOI,文献DOI怎么找? 2635432
邀请新用户注册赠送积分活动 1583495
关于科研通互助平台的介绍 1538634