PipeCompress: Accelerating Pipelined Communication for Distributed Deep Learning

计算机科学 可扩展性 瓶颈 过程(计算) 数据压缩 分布式计算 管道(软件) 反向传播 深度学习 实时计算 通信系统 人工智能 人工神经网络 嵌入式系统 计算机网络 数据库 操作系统 程序设计语言
作者
Juncai Liu,Jessie Hui Wang,Chenghao Rong,Jilong Wang
标识
DOI:10.1109/icc45855.2022.9839126
摘要

Distributed learning is widely used to accelerate the training of deep learning models, but it is known that communication efficiency limits the scalability of distributed learning systems. Current gradient compression techniques provide promising methods to reduce communication time, but the extra time incurred by compression is not negligible. After compression techniques are applied, the communication time is significantly reduced because the data size needed to communicate becomes much smaller, but compressing gradients is time-consuming and it becomes a new bottleneck. In this paper, we design and implement PipeCompress, a system to decouple compression and backpropagation operations into two processes and pipeline the two processes to hide compression time. We also propose a specialized inter-process communication mechanism based on the characteristics of DNN distributed training to improve the efficiency of passing messages between the two processes, which makes sure that the decoupling does not bring much extra inter-process communication time cost. As far as we know, this is the first work that notices the overhead of compression and pipelines backpropagation and compression operations to hide compression time in distributed learning. Experiments show that PipeCompress can significantly hide compression time, reduce iteration time, and accelerate the training process on various DNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山野雾灯完成签到 ,获得积分10
1秒前
小蘑菇应助绵杨采纳,获得10
1秒前
包佳梁完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
ding应助cancan采纳,获得10
3秒前
孟一完成签到,获得积分10
3秒前
5秒前
zakaria完成签到,获得积分10
5秒前
浮游应助SY采纳,获得10
6秒前
8秒前
佳丽完成签到,获得积分10
9秒前
9秒前
白昼星辰发布了新的文献求助10
9秒前
mxl发布了新的文献求助10
9秒前
黎明完成签到,获得积分10
9秒前
浮游应助tly采纳,获得10
9秒前
踏雪飞鸿完成签到,获得积分10
10秒前
丰富的天佑完成签到 ,获得积分10
11秒前
问天完成签到 ,获得积分10
12秒前
Fairy完成签到,获得积分10
12秒前
黎明发布了新的文献求助10
13秒前
隐形冷亦完成签到,获得积分10
13秒前
14秒前
14秒前
深情安青应助清爽慕山采纳,获得10
14秒前
Orange应助mnc采纳,获得10
16秒前
斯文败类应助MA采纳,获得10
17秒前
绵杨发布了新的文献求助10
18秒前
18秒前
20秒前
馍夹菜完成签到,获得积分10
21秒前
zfd发布了新的文献求助10
22秒前
吴海娇完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
一个可爱玉完成签到,获得积分20
25秒前
英俊的铭应助chaoschen采纳,获得50
29秒前
星辰大海应助忧心的清炎采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740