PipeCompress: Accelerating Pipelined Communication for Distributed Deep Learning

计算机科学 可扩展性 瓶颈 过程(计算) 数据压缩 分布式计算 管道(软件) 反向传播 深度学习 实时计算 通信系统 人工智能 人工神经网络 嵌入式系统 计算机网络 数据库 操作系统 程序设计语言
作者
Juncai Liu,Jessie Hui Wang,Chenghao Rong,Jilong Wang
标识
DOI:10.1109/icc45855.2022.9839126
摘要

Distributed learning is widely used to accelerate the training of deep learning models, but it is known that communication efficiency limits the scalability of distributed learning systems. Current gradient compression techniques provide promising methods to reduce communication time, but the extra time incurred by compression is not negligible. After compression techniques are applied, the communication time is significantly reduced because the data size needed to communicate becomes much smaller, but compressing gradients is time-consuming and it becomes a new bottleneck. In this paper, we design and implement PipeCompress, a system to decouple compression and backpropagation operations into two processes and pipeline the two processes to hide compression time. We also propose a specialized inter-process communication mechanism based on the characteristics of DNN distributed training to improve the efficiency of passing messages between the two processes, which makes sure that the decoupling does not bring much extra inter-process communication time cost. As far as we know, this is the first work that notices the overhead of compression and pipelines backpropagation and compression operations to hide compression time in distributed learning. Experiments show that PipeCompress can significantly hide compression time, reduce iteration time, and accelerate the training process on various DNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wfc发布了新的文献求助10
4秒前
Walter完成签到 ,获得积分10
5秒前
LION完成签到,获得积分10
5秒前
平安喜乐完成签到,获得积分10
5秒前
6秒前
明月清风发布了新的文献求助10
6秒前
9秒前
小蘑菇应助清茶一抹采纳,获得10
10秒前
caoyonggang发布了新的文献求助10
11秒前
爆米花应助火星上向珊采纳,获得10
11秒前
Jiangzhibing发布了新的文献求助10
12秒前
科研通AI2S应助水空明采纳,获得30
12秒前
wfc完成签到,获得积分10
13秒前
威武馒头发布了新的文献求助10
15秒前
善学以致用应助噫吁嚱采纳,获得10
15秒前
16秒前
科研通AI6应助胡文静采纳,获得10
16秒前
赵文浩应助取名真烦采纳,获得10
16秒前
陈宇发布了新的文献求助10
20秒前
22秒前
共享精神应助木木夕云采纳,获得10
22秒前
科研通AI6应助明月清风采纳,获得30
23秒前
浮游应助wuzhi采纳,获得10
23秒前
23秒前
Brrr发布了新的文献求助10
23秒前
25秒前
27秒前
无情元菱完成签到 ,获得积分10
30秒前
fsznc1完成签到 ,获得积分0
30秒前
30秒前
噫吁嚱发布了新的文献求助10
32秒前
xing发布了新的文献求助10
32秒前
35秒前
36秒前
38秒前
39秒前
所所应助shelly采纳,获得10
39秒前
42秒前
传奇3应助王大白采纳,获得10
42秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125754
求助须知:如何正确求助?哪些是违规求助? 4329444
关于积分的说明 13491137
捐赠科研通 4164408
什么是DOI,文献DOI怎么找? 2282909
邀请新用户注册赠送积分活动 1283936
关于科研通互助平台的介绍 1223344