PipeCompress: Accelerating Pipelined Communication for Distributed Deep Learning

计算机科学 可扩展性 瓶颈 过程(计算) 数据压缩 分布式计算 管道(软件) 反向传播 深度学习 实时计算 通信系统 人工智能 人工神经网络 嵌入式系统 计算机网络 数据库 操作系统 程序设计语言
作者
Juncai Liu,Jessie Hui Wang,Chenghao Rong,Jilong Wang
标识
DOI:10.1109/icc45855.2022.9839126
摘要

Distributed learning is widely used to accelerate the training of deep learning models, but it is known that communication efficiency limits the scalability of distributed learning systems. Current gradient compression techniques provide promising methods to reduce communication time, but the extra time incurred by compression is not negligible. After compression techniques are applied, the communication time is significantly reduced because the data size needed to communicate becomes much smaller, but compressing gradients is time-consuming and it becomes a new bottleneck. In this paper, we design and implement PipeCompress, a system to decouple compression and backpropagation operations into two processes and pipeline the two processes to hide compression time. We also propose a specialized inter-process communication mechanism based on the characteristics of DNN distributed training to improve the efficiency of passing messages between the two processes, which makes sure that the decoupling does not bring much extra inter-process communication time cost. As far as we know, this is the first work that notices the overhead of compression and pipelines backpropagation and compression operations to hide compression time in distributed learning. Experiments show that PipeCompress can significantly hide compression time, reduce iteration time, and accelerate the training process on various DNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助keyanyan采纳,获得10
1秒前
科研通AI5应助亲亲紫荆采纳,获得30
1秒前
司空豁应助宇小姐采纳,获得10
2秒前
2秒前
2秒前
庆幸发布了新的文献求助10
3秒前
YF_1987发布了新的文献求助10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
赘婿应助愤怒的梦柏采纳,获得10
5秒前
领导范儿应助KD357采纳,获得10
5秒前
嘻嘻嘻发布了新的文献求助10
5秒前
5秒前
6秒前
文刀发布了新的文献求助10
6秒前
lll发布了新的文献求助20
6秒前
zhe完成签到 ,获得积分10
6秒前
陈惠卿88完成签到,获得积分10
7秒前
共享精神应助木木三采纳,获得10
7秒前
7秒前
考博上岸26完成签到 ,获得积分10
7秒前
华仔应助xunoverflow采纳,获得10
8秒前
9秒前
FeLaN发布了新的文献求助10
9秒前
bkagyin应助庆幸采纳,获得10
9秒前
李雩完成签到 ,获得积分10
9秒前
10秒前
angelalxj关注了科研通微信公众号
10秒前
10秒前
小栩发布了新的文献求助10
11秒前
blank发布了新的文献求助10
11秒前
和谐念寒发布了新的文献求助10
12秒前
12秒前
tiantian发布了新的文献求助10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343