已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PipeCompress: Accelerating Pipelined Communication for Distributed Deep Learning

计算机科学 可扩展性 瓶颈 过程(计算) 数据压缩 分布式计算 管道(软件) 反向传播 深度学习 实时计算 通信系统 人工智能 人工神经网络 嵌入式系统 计算机网络 数据库 程序设计语言 操作系统
作者
Juncai Liu,Jessie Hui Wang,Chenghao Rong,Jilong Wang
标识
DOI:10.1109/icc45855.2022.9839126
摘要

Distributed learning is widely used to accelerate the training of deep learning models, but it is known that communication efficiency limits the scalability of distributed learning systems. Current gradient compression techniques provide promising methods to reduce communication time, but the extra time incurred by compression is not negligible. After compression techniques are applied, the communication time is significantly reduced because the data size needed to communicate becomes much smaller, but compressing gradients is time-consuming and it becomes a new bottleneck. In this paper, we design and implement PipeCompress, a system to decouple compression and backpropagation operations into two processes and pipeline the two processes to hide compression time. We also propose a specialized inter-process communication mechanism based on the characteristics of DNN distributed training to improve the efficiency of passing messages between the two processes, which makes sure that the decoupling does not bring much extra inter-process communication time cost. As far as we know, this is the first work that notices the overhead of compression and pipelines backpropagation and compression operations to hide compression time in distributed learning. Experiments show that PipeCompress can significantly hide compression time, reduce iteration time, and accelerate the training process on various DNN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
赘婿应助静汉采纳,获得10
2秒前
十月木樨发布了新的文献求助10
3秒前
3秒前
4秒前
打打应助小小科研牛马采纳,获得10
6秒前
微笑咖啡豆完成签到 ,获得积分20
13秒前
缓慢采柳完成签到 ,获得积分10
13秒前
TGU的小马同学完成签到 ,获得积分10
13秒前
15秒前
爱航哥多久了完成签到 ,获得积分10
15秒前
Sea_moon完成签到,获得积分10
19秒前
香蕉觅云应助iamxx_采纳,获得10
20秒前
21秒前
852应助Lx2huo采纳,获得10
26秒前
米可熊完成签到,获得积分20
26秒前
迅捷海狸发布了新的文献求助10
26秒前
Sam完成签到,获得积分10
28秒前
顾矜应助伯克利芙蓉王采纳,获得30
28秒前
珏珏_不是玉玉完成签到 ,获得积分10
29秒前
30秒前
研友_VZG7GZ应助天真的大船采纳,获得10
30秒前
31秒前
研友_ngX12Z完成签到 ,获得积分10
32秒前
win完成签到 ,获得积分10
33秒前
乐乐应助wangli采纳,获得10
34秒前
开心惜梦完成签到,获得积分10
35秒前
害怕的代亦完成签到 ,获得积分10
38秒前
39秒前
40秒前
完美世界应助害怕的板凳采纳,获得10
40秒前
GGGrigor完成签到,获得积分10
41秒前
空白格完成签到 ,获得积分10
42秒前
45秒前
DI完成签到 ,获得积分10
45秒前
46秒前
50秒前
50秒前
健忘无颜发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361