PipeCompress: Accelerating Pipelined Communication for Distributed Deep Learning

计算机科学 可扩展性 瓶颈 过程(计算) 数据压缩 分布式计算 管道(软件) 反向传播 深度学习 实时计算 通信系统 人工智能 人工神经网络 嵌入式系统 计算机网络 数据库 程序设计语言 操作系统
作者
Juncai Liu,Jessie Hui Wang,Chenghao Rong,Jilong Wang
标识
DOI:10.1109/icc45855.2022.9839126
摘要

Distributed learning is widely used to accelerate the training of deep learning models, but it is known that communication efficiency limits the scalability of distributed learning systems. Current gradient compression techniques provide promising methods to reduce communication time, but the extra time incurred by compression is not negligible. After compression techniques are applied, the communication time is significantly reduced because the data size needed to communicate becomes much smaller, but compressing gradients is time-consuming and it becomes a new bottleneck. In this paper, we design and implement PipeCompress, a system to decouple compression and backpropagation operations into two processes and pipeline the two processes to hide compression time. We also propose a specialized inter-process communication mechanism based on the characteristics of DNN distributed training to improve the efficiency of passing messages between the two processes, which makes sure that the decoupling does not bring much extra inter-process communication time cost. As far as we know, this is the first work that notices the overhead of compression and pipelines backpropagation and compression operations to hide compression time in distributed learning. Experiments show that PipeCompress can significantly hide compression time, reduce iteration time, and accelerate the training process on various DNN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
y741应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
水123发布了新的文献求助10
1秒前
sycsyc完成签到,获得积分10
2秒前
2秒前
zdw完成签到,获得积分10
4秒前
科研通AI2S应助明亮谷波采纳,获得10
4秒前
saywhy完成签到 ,获得积分10
4秒前
redamancy完成签到 ,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Lee发布了新的文献求助10
6秒前
7秒前
lshl2000完成签到,获得积分10
7秒前
充电宝应助王蕊采纳,获得10
8秒前
优美紫槐给nana湘的求助进行了留言
8秒前
蔡海洋完成签到,获得积分10
9秒前
快乐小瑶完成签到 ,获得积分10
9秒前
9秒前
Akim应助文静小刺猬采纳,获得10
9秒前
10秒前
zgn完成签到,获得积分10
11秒前
Angie发布了新的文献求助30
11秒前
12秒前
liusoojoo完成签到,获得积分10
12秒前
调皮的巧凡完成签到,获得积分10
13秒前
Ming发布了新的文献求助10
14秒前
15秒前
15秒前
zgn发布了新的文献求助10
16秒前
16秒前
橘子海完成签到 ,获得积分10
16秒前
xcl完成签到,获得积分10
17秒前
完美萤发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603867
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14855984
捐赠科研通 4695232
什么是DOI,文献DOI怎么找? 2541009
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814