Efficient CO2 Electrochemical Reduction by a Robust Electrocatalyst Fabricated by Electrodeposition of Indium and Zinc over Copper Foam

电催化剂 电化学 析氧 化学工程 材料科学 法拉第效率 氧化还原 电极 化学 无机化学 纳米技术 冶金 工程类 物理化学
作者
Suchada Sirisomboonchai,Hiroshi Machida,Khuyen Viet Bao Tran,Masaya Kawasumi,Koyo Norinaga
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (8): 9846-9857 被引量:18
标识
DOI:10.1021/acsaem.2c01564
摘要

Electrochemical reduction of CO2 comprising the CO2 reduction reactuib (CO2RR) and oxygen evolution reaction (OER) is one of the most promising technologies for electrification of the chemical process industry. Here, the performance of a electrocatalyst with a three-dimensional structure of InZnCu on Cu foam (CF) is presented. This electrocatalyst was fabricated by electrodeposition of In and Zn over Cu and exhibited a superior reduction of CO2 to CO at a Faradaic efficiency of 93.7% at −0.7 V and an excellently long duration of 100 h. Due to the synergy of the thin In layer, the Zn nanosheets provided a high surface-active area and strong mechanical robustness during the reaction. Additionally, a two-electrode system was constructed based on the CF-modified surface, which provided valuable guidelines on the overall CO2RR–OER system for further evolution. Furthermore, due to the facile synthesis, the bimetal-layer double hydroxide (LDH) exhibited high conductivity and high OER performance. Hence, the two-electrode system assembled excellent electrocatalysts for the CO2RR–OER (InZnCu/CF||Cu(OH)2 NWs@NiCo-LDH/CF) with high conversions of CO2 to CO of 67% and 88% at 2 and 50 mA cm–2, respectively. Notably, the CO2RR–OER system exhibited excellent stability in a 40 h CO2 conversion with a constant current density of 2 mA cm–2 at an ultralow voltage of 1.59 V. Moreover, the calculation of the energy input converting CO per ton of CO2 resulted in a low energy input range for further development in scalability. This overall CO2RR–OER proposes development in electrochemical CO2 reduction for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tysonqu完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
12秒前
DHW1703701完成签到,获得积分10
12秒前
xiahou发布了新的文献求助50
17秒前
无情的踏歌完成签到,获得积分0
17秒前
好大白完成签到 ,获得积分10
18秒前
18秒前
20秒前
米奇妙妙屋完成签到,获得积分10
20秒前
热情爆米花完成签到 ,获得积分10
21秒前
chemzhh完成签到,获得积分10
21秒前
星之完成签到,获得积分10
21秒前
东风完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
新开完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
Arthur完成签到 ,获得积分10
23秒前
DTOU应助一颗糖炒栗子采纳,获得10
24秒前
烤鸭完成签到 ,获得积分10
26秒前
Vanity完成签到 ,获得积分10
28秒前
执着的以筠完成签到 ,获得积分10
29秒前
1515完成签到 ,获得积分10
29秒前
meizi0109完成签到 ,获得积分10
29秒前
30秒前
威武鸽子发布了新的文献求助10
30秒前
xiahou完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
简奥斯汀完成签到 ,获得积分10
36秒前
36秒前
ESC惠子子子子子完成签到 ,获得积分10
37秒前
六元一斤虾完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
40秒前
roundtree完成签到 ,获得积分0
41秒前
41秒前
zhaolee完成签到 ,获得积分10
43秒前
一颗糖炒栗子完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773368
求助须知:如何正确求助?哪些是违规求助? 5610371
关于积分的说明 15430973
捐赠科研通 4905878
什么是DOI,文献DOI怎么找? 2639904
邀请新用户注册赠送积分活动 1587778
关于科研通互助平台的介绍 1542792