Efficient CO2 Electrochemical Reduction by a Robust Electrocatalyst Fabricated by Electrodeposition of Indium and Zinc over Copper Foam

电催化剂 电化学 析氧 化学工程 材料科学 法拉第效率 氧化还原 电极 化学 无机化学 纳米技术 冶金 工程类 物理化学
作者
Suchada Sirisomboonchai,Hiroshi Machida,Khuyen Viet Bao Tran,Masaya Kawasumi,Koyo Norinaga
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (8): 9846-9857 被引量:13
标识
DOI:10.1021/acsaem.2c01564
摘要

Electrochemical reduction of CO2 comprising the CO2 reduction reactuib (CO2RR) and oxygen evolution reaction (OER) is one of the most promising technologies for electrification of the chemical process industry. Here, the performance of a electrocatalyst with a three-dimensional structure of InZnCu on Cu foam (CF) is presented. This electrocatalyst was fabricated by electrodeposition of In and Zn over Cu and exhibited a superior reduction of CO2 to CO at a Faradaic efficiency of 93.7% at −0.7 V and an excellently long duration of 100 h. Due to the synergy of the thin In layer, the Zn nanosheets provided a high surface-active area and strong mechanical robustness during the reaction. Additionally, a two-electrode system was constructed based on the CF-modified surface, which provided valuable guidelines on the overall CO2RR–OER system for further evolution. Furthermore, due to the facile synthesis, the bimetal-layer double hydroxide (LDH) exhibited high conductivity and high OER performance. Hence, the two-electrode system assembled excellent electrocatalysts for the CO2RR–OER (InZnCu/CF||Cu(OH)2 NWs@NiCo-LDH/CF) with high conversions of CO2 to CO of 67% and 88% at 2 and 50 mA cm–2, respectively. Notably, the CO2RR–OER system exhibited excellent stability in a 40 h CO2 conversion with a constant current density of 2 mA cm–2 at an ultralow voltage of 1.59 V. Moreover, the calculation of the energy input converting CO per ton of CO2 resulted in a low energy input range for further development in scalability. This overall CO2RR–OER proposes development in electrochemical CO2 reduction for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nami给Nami的求助进行了留言
刚刚
冬月完成签到,获得积分10
刚刚
cdd完成签到,获得积分10
1秒前
疯狂大脑壳完成签到,获得积分10
1秒前
小九九完成签到,获得积分10
3秒前
Sindy完成签到,获得积分10
3秒前
杭紫雪完成签到,获得积分10
4秒前
CYJ完成签到,获得积分10
4秒前
优美的碧琴完成签到,获得积分10
6秒前
舒心的水卉完成签到,获得积分10
6秒前
Purplesky完成签到,获得积分10
6秒前
wzy完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
my完成签到,获得积分10
7秒前
liyuxuan完成签到,获得积分10
7秒前
hentai完成签到,获得积分10
7秒前
小许会更好完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
dong应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027