过度拟合
风速
随机森林
遥感
反演(地质)
计算机科学
合成孔径雷达
辐射计
微波辐射计
无线电频率
微波食品加热
非线性系统
风向
算法
气象学
环境科学
地质学
人工智能
物理
电信
古生物学
构造盆地
量子力学
人工神经网络
作者
Wenjin Yang,Peng Yu,Xiaoying Cai,Xiaojing Zhong,Yuanrong He
摘要
This study provides a random forest (RF) based method to retrieve high wind speeds, which takes advantage of RF's powerful nonlinear fitting ability and prevents overfitting. The high wind speed data from the Stepping Frequency Microwave Radiometer (SFMR) are used as the reference data. Compared with two traditional GMF models, the C-band cross-polarized ocean model (C-2PO) and the C-band cross-polarized coupled parameter ocean model (C-3PO), the wind speed inversion results using the RF method have been greatly improved.
科研通智能强力驱动
Strongly Powered by AbleSci AI