Facet engineering: Enhancing photogenerated carrier separation and transport in CuCoO2 photo(electro)catalysts

光电流 材料科学 催化作用 兴奋剂 热液循环 化学工程 纳米材料 纳米技术 异质结 光催化 光电子学 化学 生物化学 工程类
作者
Yi-Man Zhang,Zong‐Yan Zhao,Miao Yang,Dehua Xiong,Tang Wen,Yunkun Zhao
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 1236-1247 被引量:2
标识
DOI:10.1016/j.ijhydene.2023.11.059
摘要

Efficient delafossite CuCoO2 photo(electro)catalysts necessitate effective separation and transport of photogenerated carriers to enable the production of solar fuel. Addressing this requirement, the current study employed facet engineering to induce the surface polarization effect. Hydrothermal conditions were utilized to prepare CuCoO2 photo(electro)catalysts with diverse morphologies and sizes. Specifically, CuCoO2 hexagonal nanosheets, predominantly exposing the (001) facet and possessing a thickness of 120 nm, exhibited optimal performance, as evidenced by a photocurrent density of 40 μA/cm2 under zero-bias conditions and 90 % degradation of tetracycline hydrochloride within 150 min. To overcome the limitations associated with hydrothermal preparation, Ca substitutional doping was employed. This doping strategy caused disruption of the O–Cu–O dumbbell-like structural motif, transforming CuCoO2 into an open-layered structure while simultaneously reducing the thickness of CuCoO2 hexagonal nanosheets to 30 nm. Consequently, an enhancement in the photo(electro)catalytic performance was achieved. By striking a balance between the surface polarization effect and the doping effect, CuCoO2 hexagonal nanosheets with 0.5 % Ca doping content and a thickness of 80 nm exhibited the most significant photo(electro)catalytic performance. This study presents a feasible strategy and concept for optimizing the morphology and hydrothermal preparation conditions of CuCoO2 nanomaterials, leading to improved photo(electro)catalytic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
曹中明发布了新的文献求助10
2秒前
老子完成签到,获得积分10
3秒前
所所应助邓佳鑫Alan采纳,获得10
3秒前
张一二完成签到,获得积分10
3秒前
所所应助温乘云采纳,获得10
5秒前
英姑应助Xxxnnian采纳,获得10
5秒前
5秒前
Sissi发布了新的文献求助10
6秒前
田様应助无情的瑾瑜采纳,获得10
7秒前
7秒前
THL发布了新的文献求助10
8秒前
9秒前
高骏伟发布了新的文献求助10
10秒前
无私萧发布了新的文献求助30
11秒前
12秒前
慕青应助曹中明采纳,获得10
13秒前
13秒前
13秒前
15秒前
15秒前
bioglia发布了新的文献求助10
16秒前
ewean发布了新的文献求助10
16秒前
17秒前
追寻的绮露完成签到,获得积分10
19秒前
wanci应助plq采纳,获得10
19秒前
慕青应助幸福果汁采纳,获得10
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
mei完成签到,获得积分10
20秒前
zzt完成签到 ,获得积分10
21秒前
邓佳鑫Alan发布了新的文献求助10
21秒前
无花果应助luca采纳,获得10
21秒前
幽迷狂的发胶完成签到,获得积分10
22秒前
23秒前
1233发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328