亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual contrast attention-guided multi-frequency fusion for multi-contrast MRI super-resolution

对比度(视觉) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 融合 特征(语言学) 纹理(宇宙学) 图像(数学) 语言学 哲学
作者
Weipeng Kong,Baosheng Li,Kexin Wei,Dengwang Li,Jian Zhu,Gang Yu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (1): 015010-015010
标识
DOI:10.1088/1361-6560/ad0b65
摘要

Objective. Multi-contrast magnetic resonance (MR) imaging super-resolution (SR) reconstruction is an effective solution for acquiring high-resolution MR images. It utilizes anatomical information from auxiliary contrast images to improve the quality of the target contrast images. However, existing studies have simply explored the relationships between auxiliary contrast and target contrast images but did not fully consider different anatomical information contained in multi-contrast images, resulting in texture details and artifacts unrelated to the target contrast images.Approach. To address these issues, we propose a dual contrast attention-guided multi-frequency fusion (DCAMF) network to reconstruct SR MR images from low-resolution MR images, which adaptively captures relevant anatomical information and processes the texture details and low-frequency information from multi-contrast images in parallel. Specifically, after the feature extraction, a feature selection module based on a dual contrast attention mechanism is proposed to focus on the texture details of the auxiliary contrast images and the low-frequency features of the target contrast images. Then, based on the characteristics of the selected features, a high- and low-frequency fusion decoder is constructed to fuse these features. In addition, a texture-enhancing module is embedded in the high-frequency fusion decoder, to highlight and refine the texture details of the auxiliary contrast and target contrast images. Finally, the high- and low-frequency fusion process is constrained by integrating a deeply-supervised mechanism into the DCAMF network.Main results. The experimental results show that the DCAMF outperforms other state-of-the-art methods. The peak signal-to-noise ratio and structural similarity of DCAMF are 39.02 dB and 0.9771 on the IXI dataset and 37.59 dB and 0.9770 on the BraTS2018 dataset, respectively. The image recovery is further validated in segmentation tasks.Significance. Our proposed SR model can enhance the quality of MR images. The results of the SR study provide a reliable basis for clinical diagnosis and subsequent image-guided treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
twk完成签到,获得积分10
5秒前
今后应助小医采纳,获得10
17秒前
20秒前
Nick完成签到 ,获得积分10
21秒前
25秒前
27秒前
小医发布了新的文献求助10
30秒前
qiang344完成签到 ,获得积分10
31秒前
酷波er应助璀璨的饺子采纳,获得10
34秒前
54秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
nenoaowu应助科研通管家采纳,获得50
1分钟前
1分钟前
1分钟前
Artin完成签到,获得积分10
2分钟前
俊逸吐司完成签到 ,获得积分10
3分钟前
3分钟前
drtianyunhong完成签到,获得积分10
3分钟前
4分钟前
居蓝完成签到 ,获得积分10
4分钟前
孟筱完成签到 ,获得积分10
4分钟前
悟川完成签到 ,获得积分10
4分钟前
4分钟前
Richardisme完成签到 ,获得积分10
5分钟前
魔幻的忆秋完成签到,获得积分10
5分钟前
飞_完成签到,获得积分10
5分钟前
郁乾完成签到,获得积分10
5分钟前
kittency完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
飞_发布了新的文献求助10
5分钟前
斯文败类应助小医采纳,获得10
6分钟前
6分钟前
草木青发布了新的文献求助10
6分钟前
lanxinge完成签到 ,获得积分10
6分钟前
6分钟前
领导范儿应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
研友_LwM9JZ完成签到,获得积分10
7分钟前
7分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422860
求助须知:如何正确求助?哪些是违规求助? 3023255
关于积分的说明 8903906
捐赠科研通 2710663
什么是DOI,文献DOI怎么找? 1486639
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330